Параметры с нуля книга
Задачи с параметрами при подготовке к ЕГЭ, Высоцкий, 2011
Задачи с параметрами при подготовке к ЕГЭ, Высоцкий В.С., 2011.
Книга посвящена решению задач с параметрами, которые для многих школьников традиционно являются задачами повышенной трудности. Задачи классифицированы как по типам, так и по методам решений, начиная от простейших задач до трудных, встречающихся на олимпиадах, ЕГЭ и вступительных экзаменах в МГУ.
Для учащихся 8-11 классов, учителей школ, гимназий, лицеев, слушателей подготовительных курсов.
ЧТО ТАКОЕ ПАРАМЕТР.
Как это ни покажется странным, задачи с параметрами мы решаем чуть ли не ежедневно, при этом в большинстве своем не зная, что такое параметр. Например, придя в магазин покупать какой-либо товар, мы смотрим на его цену. Если цена будет очень высокой, мы не купим его. Если цена будет вполне приемлемой, мы принимаем решение купить товар. Но если цена товара резко уменьшилась (например, в результате распродажи), мы можем купить несколько единиц этого товара. Таким образом, если рассматривать цену товара как параметр, то от значений этого параметра будет зависеть, купим или не купим мы этот товар, а если и купим, то сколько единиц.
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ 5
ГЛАВА 1 ЗАДАЧИ С ПАРАМЕТРАМИ 7
§ 1. Что такое параметр 7
§ 2. Различные формулировки задач с параметрами 8
Задачи для самостоятельного решения 10
ГЛАВА 2 ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА 13
§ 1. Линейные уравнения 13
§ 2. Линейные неравенства 18
Задачи для самостоятельного решения 22
ГЛАВА 3 КВАДРАТНЫЕ УРАВНЕНИЯ 25
Задачи для самостоятельного решения 50
ГЛАВА 4 КВАДРАТНЫЕ НЕРАВЕНСТВА 53
Задачи для самостоятельного решения 72
ГЛАВА 5 ЗАДАЧИ, СВОДЯЩИЕСЯ К ИССЛЕДОВАНИЮ КВАДРАТНОГО ТРЕХЧЛЕНА 75
§ 1. Уравнения и неравенства 75
§ 2. Дополнительный материал по алгебре 91
§ 3. Продолжение исследования уравнений и неравенств 96
Задачи для самостоятельного решения 102
ГЛАВА 6 ГРАФИЧЕСКИЕ МЕТОДЫ. МЕТОД СЕЧЕНИЙ 107
§ 1. Угол наклона прямой 107
§ 2. Уравнение прямой 108
§ 3. Геометрический смысл параметров прямой 108
§ 4. Графики линейных функций 108
§ 5. Вспомогательные задачи 111
§ 6. Параллельность и перпендикулярность прямых 113
§ 7. Графическое решение уравнений и неравенств 117
§ 8. Сечение семейством прямых у-а 119
§ 9. Сечение семейством прямых у = х + а 123
§ 10. Сечение семейством прямых у-ах 129
§ 11. Касание параболы и прямой 133
Задачи для самостоятельного решения 152
ГЛАВА 7 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ 155
§ 1. Вводные замечания 155
§ 2. Исследование линейных систем методом подстановки 157
§ 3. Соотношения между коэффициентами системы в зависимости от числа решений 172
§ 4. Геометрическая интерпретация решений 175
Задачи для самостоятельного решения 176
ГЛАВА 8 СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 179
§ 1. Методы решения 179
Задачи для самостоятельного решения 190
§ 2. Аналитические методы исследования нелинейных систем с параметрами 191
Задачи для самостоятельного решения 206
§ 3. Графические методы исследования нелинейных систем с параметрами 208
Задачи для самостоятельного решения 232
ГЛАВА 9 ЗАДАЧИ С ПАРАМЕТРАМИ НА ЕДИНОМ ГОСУДАРСТВЕННОМ ЭКЗАМЕНЕ 235
Задачи для самостоятельного решения 271
ОТВЕТЫ 275
Глава 1 275
Глава 2 275
Глава 3 277
Глава 4 279
Глава 5 283
Глава 6 288
Глава 7 296
Глава 8 298
Глава 9 306
ЛИТЕРАТУРА 313.
Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России. Купить эту книгу
Задачи с параметрами и методы их решения, Крамор В.С., 2007
Задачи с параметрами и методы их решения, Крамор В.С., 2007.
Цель книги – научить школьников и абитуриентов ВУЗов самостоятельно решать задачи с параметрами и помочь прочно усвоить различные методы их решения.
Пособие содержит около 350 типовых задач с методическими указаниями и 300 задач для самостоятельного решения и ответы к ним.
Книга может быть использована при подготовке к выпускным экзаменам в средней школе, к сдаче ЕГЭ и вступительным экзаменам в ВУЗ.
Понятие функции.
1°. Зависимость одной переменной от другой называют функциональной зависимостью.
2°. Зависимость переменной у от переменной х называют функцией, если каждому значению х соответствует единственное значение у. При этом используют запись у = f(x).
3°. Переменную х называют независимой переменной (или аргументом), а переменную у — зависимой переменной. Говорят, что у является функцией от х.
4°. Значение у, соответствующее заданному значению х, называют значением функции.
5°. Все значения, которые принимает независимая переменная, образуют область определения функции.
6°. Все значения, которые принимает зависимая переменная, образуют множество значений функции.
7°. Для функции f приняты обозначения:
а) D(f) — область определения функции;
б) E(f) — множество значений функции;
в) f(x0) — значение функции в точке х0.
Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России. Купить эту книгу
Задачи с параметрами на ЕГЭ по математике
Задача с параметрами – одна из самых сложных в ЕГЭ по математике Профильного уровня. Это задание №18
И знать здесь действительно нужно много.
Научиться строить графики всех элементарных функций (и отличать по внешнему виду логарифм от корня квадратного, а экспоненту – от параболы).
И после этого – учимся решать сами задачи №18 Профильного ЕГЭ.
Вот основные типы задач с параметрами:
Еще одна задача с параметром – повышенного уровня сложности. Автор задачи – Анна Малкова
И несколько полезных советов тем, кто решает задачи с параметрами:
1. Есть два универсальных правила для решения задач с параметрами. Помогают всегда. Хорошо, в 99% случаев помогают. То есть почти всегда.
— Если в задаче с параметром можно сделать замену переменной – сделайте замену переменной.
— Если задачу с параметром можно решить нарисовать – рисуйте. То есть применяйте графический метод.
2. Новость для тех, кто решил заниматься только алгеброй и обойтись без геометрии (мы уже рассказывали о том, почему это невозможно). Многие задачи с параметрами быстрее и проще решаются именно геометрическим способом.
Эксперты ЕГЭ очень не любят слова «Из рисунка видно…» Ваш рисунок – только иллюстрация к решению. Вам нужно объяснить, на что смотреть, и обосновать свои выводы. Примеры оформления – здесь. Эксперты ЕГЭ также не любят слова «очевидно, что…» (когда ничего не очевидно) и «ёжику ясно…».
3. Сколько надо решить задач, чтобы освоить тему «Параметры на ЕГЭ по математике»? – Хотя бы 50, и самых разных. И в результате, посмотрев на задачу с параметром, вы уже поймете, что с ней делать.
4. Задачи с параметрами похожи на конструктор. Разобрав много таких задач, вы заметите, как решение «собирается» из знакомых элементов. Сможете разглядеть уравнение окружности или отрезка. Переформулировать условие, чтобы сделать его проще.
На нашем Онлайн-курсе теме «Параметры» посвящено не менее 12 двухчасовых занятий. Кстати, оценивается задача 18 Профильного ЕГЭ в 4 первичных балла, которые отлично пересчитываются в тестовые!
Как подготовиться к решению задач с параметром на ЕГЭ | 1С:Репетитор
Лектор, методолог, автор учебных материалов и пособий |
Задание № 18 варианта КИМ ЕГЭ по математике профильного уровня
Задача с параметром – для обычного школьника одна из самых сложных задач варианта КИМ ЕГЭ: в программах по математике для общеобразовательных школ (за исключением профильных и специализированных классов, школ и лицеев) таким задачам либо не уделяется должного внимания, либо они не рассматриваются вовсе. Несмотря на это, знание набора методов и подходов к решению таких задач и определенная практика их решения позволяют продвинуться в решении задачи с параметром достаточно далеко и если уж не решить ее полностью, то хотя бы получить за нее некоторое количество баллов на экзамене.
Ранее, до появления единого государственного экзамена, задачи с параметрами входили в варианты вступительных экзаменов по математике в ведущие вузы, а сегодня входят в вариант КИМ ЕГЭ профильного уровня. Дело в том, что эти задачи обладают высокой диагностической ценностью: они позволяют не только определить, насколько хорошо выпускник знает основные разделы школьного курса математики, но и проверить, насколько высок уровень его математического и логического мышления, насколько сильны первоначальные навыки математической исследовательской деятельности, а главное – насколько успешно он сможет овладеть курсом математики в вузе.
«Научите меня решать задачи с параметром», – такую просьбу я часто слышу от своих учеников. Что ж, эта задача потребует от выпускника немало интеллектуальных усилий. С чего начать изучение? С освоения методов решения задач с параметром. Собственно, если вы внимательно читали наши рекомендации, как подготовиться к решению сложных задач варианта КИМ ЕГЭ, то заметили, что это универсальный совет. Именно так построен наш курс «1С:Репетитор»: изучаем как можно более широкий спектр методов и приемов решения задач и тренируемся в применении этих методов на практике.
Чему нужно научиться, решая задачи с параметром
В первую очередь – правильно применять равносильные преобразования уравнений, неравенств и их систем. То есть понять, при каких ограничениях, накладываемых на параметр, можно выполнять то или иное преобразование. Лучше всего начать с заданий вида: «Для каждого значения параметра решить…» и рассмотреть по возможности все основные элементарные функции, встречающиеся в школьном курсе математики.
Если с несложными задачами такого вида школьник справляется неплохо, то можно переходить к изучению аналитических методов решения задач, содержательно усложняя и классифицируя задачи с точки зрения применения к ним этих методов исследования. Имеется в виду знакомство с подходами к решению задач, содержащих формулировки типа: «При каких значениях параметра уравнение (неравенство, система) имеет одно (два, три, бесконечно много и т.д.) решений», «При каких значениях параметра решением уравнения (неравенства, системы) является некоторое подмножество множества действительных чисел» и т.д.
Следующий шаг, который мы рекомендуем, – тщательно изучить схему исследования квадратичной функции. Поскольку квадратичная функция является одной из самых хорошо изученных в школьном курсе математики, на ее основе можно предложить большое количество исследовательских задач, разнообразных по форме и содержанию, чем и пользуются составители вариантов КИМ ЕГЭ.
Мы рекомендуем подойти к рассмотрению данных задач по следующей схеме:
Следующая тема курса – графические методы решения задач с параметром
На этом перечень методов решения задач с параметрами, разумеется, не заканчивается, но анализ вариантов КИМ ЕГЭ профильного уровня и практика показывают, что в настоящее время этого достаточно для успешного решения задачи № 18 на экзамене.
В заключение отметим, что выстроить подобный курс самостоятельно, без преподавателя, обычный школьник не сможет, даже имея под рукой хорошие учебные пособия по методам решения задач с параметром. Здесь необходима помощь опытного наставника, который сможет подобрать нужные задачи и выстроить траекторию движения школьника по ним.
Заметим, кстати, что весьма эффективным инструментом для изучения именно методов решения задач с параметром являются интерактивные тренажеры с пошаговым разбором решения.
Работая с таким тренажером, школьник одновременно учится выстраивать логику решения задачи с параметром и контролирует правильность выполнения каждого шага решения. Это очень важное умение, так как одна из основных сложностей в решении задачи с параметром состоит в том, что необходимо на каждом шаге решения понимать, что означают уже полученные результаты и что (в зависимости от этих результатов) еще остается сделать, чтобы довести решение до конца.
Регулярно тренируйтесь в решении задач
Чтобы начать заниматься на портале «1С:Репетитор», достаточно Зарегистрироваться.
Вы можете:
Все курсы состоят из методически правильной последовательности теории и практики, необходимой для успешного решения задач. Включают теорию в форме текстов, слайдов и видео, задачи с решениями, интерактивные тренажеры, модели, и тесты.
Остались вопросы? Позвоните нам по телефону 8 800 551-50-78 или напишите в онлайн-чат.
Параметры с нуля книга
Экстремумы [1966] Нагибин Ф.Ф.
Введение в метаматематику [1957] Клини С.К.
Имя одного из крупнейших современных специалистов в области математической логики С.К.Клини знакомо советскому читателю по русскому переводу его фундаментального труда «Введение в метаматематику» (ИЛ, 1957), ставшего настольной книгой для всех, кто занимается математической логикой, рекурсивными, функциями и основаниями математики. Книга является самой обширной из имевшихся на момент её выхода в свет монографий по математической логике и теории рекурсивных функций. Она не предполагает со стороны читателя никаких специальных познаний и поэтому может считаться общедоступной. Книга предназначена для глубокого изучения предмета и рассчитана как на специалистов по математической логике и теории рекурсивных функций, так и на лиц, желающих впервые, но серьезно, изучить эти науки.
Метаматематика — раздел математической логики, изучающий основания математики, структуру математических доказательств и математических теорий с помощью формальных методов. Термин «метаматематика» буквально означает «за пределами математики».
В широком смысле слова метаматематика — метатеория математики, не предполагающая никаких специальных ограничений на характер используемых метатеоретических методов, на способ задания и объём исследуемой в ней «математики»..
Математическая логика [1973] С.К. Клини
Имя одного из крупнейших современных специалистов в области математической логики С.К. Клини знакомо советскому читателю по русскому переводу его фундаментального труда «Введение в метаматематику» (ИЛ, 1957), ставшего настольной книгой для всех, кто занимается математической логикой, рекурсивными, функциями и основаниями математики. Новая его книга представляет собой существенно усовершенствованный, расширенный и приближенный к нуждам университетского преподавания вариант «чисто логической» части этой всемирно известной монографии. Тщательно продуманные иллюстративные упражнения помогают читателю усвоить излагаемый, материал.
Для нахождения некоторых интегралов можно использовать формулы редукции. Такие формулы позволяют понизить степень подынтегрального выражения и вычислить соответствующие интегралы за конечное число шагов. Ниже приводятся формулы редукции для интегралов от наиболее распространенных функций.
Основы математического анализа [1968, 1 + 2 тома] Фихтенгольц Г.М.
«Основы математического анализа» задуманы как учебник анализа для студентов первого и второго курсов математических отделения университетов; в соответствии с этим и книга делится на два тома. При составлении ее был широко использован мой трехтомный «Курс дифференциального и интегрального исчисления», но содержащийся в нем материал подвергся сокращению и переработке в целях приближения книги к официальной программе по математическому анализу и к фактическим возможностям лекционного курса.
Задачи и теоремы из анализа.[2 тома][1978] Георг Полиа, Габор Сеге
В математической литературе (во французской еще больше, чем в немецкой) имеется много, частью прекрасных и богатых по материалу сборников задач, упражнений, повторительных курсов и т. п. Как нам кажется, настоящая книга от них всех отличается своей целью, материалом, его расположением, а также методом работы над ней, как мы его мыслим. Все эти моменты нуждаются поэтому в пояснении.
Главнейшей целью этой книги является приобщение лиц, достаточно продвинувшихся в изучении математики, к самостоятельному мышлению и исследованию в некоторых важных областях анализа путем решения систематически расположенных задач. Она должна служить для самодеятельного, активного изучения как в руках учащихся, так и преподавателей. Учащийся может пользоваться этой книгой либо для углубления материала, полученного при самостоятельном чтении или на лекциях, либо независимо от них, полностью прорабатывая отдельные ее части. Преподаватель может использовать ее для подготовки упражнений или семинарских занятий.
Настоящая книга отнюдь не представляет собой простого собрания задач. Главное заключается в расположении материала: оно должно побуждать читателя к самостоятельной работе и прививать ему целесообразные навыки математического мышления. Мы потратили на достижение возможно более эффективного расположения материала гораздо больше времени, старания и скрупулезной работы, чем это на первый взгляд могло бы показаться необходимым. Сообщение ряда новых сведений интересовало нас само по себе лишь во вторую очередь. В первую очередь мы желали бы способствовать выработке у читателя правильных установок, известной дисциплины мышления, что при изучении математики необходимо еще в большей мере, чем при изучении других наук.
Лучшие советские задачи по физике, математике, астрономии [2018] Гусев
Это издание порадует поклонников советской традиции интеллектуальных развлечений. На его страницах собраны лучшие, проверенные временем задачи и головоломки, по которым учились нестандартно мыслить еще наши деды и родители. Решение такого рода задач не только доставит массу удовольствия.
Оно поможет усовершенствовать навыки, необходимые образованному человеку: сообразительность, умение логически обосновать принятое решение, эрудицию в самых важных областях знаний – физике, математике, а также астрономии. И несомненно, креативность мышления, поскольку любой из вопросов может оказаться проверкой умения отойти от стереотипов.
Элементарная алгебра. Пособие для самообразования [1970] Туманов
При написании настоящего курса алгебры автор ставил себе следующие цели:
1. Чтобы по этому курсу можно было изучить предмет без помощи преподавателя и притом не формально, а с достаточно ясным пониманием сущности алгебры, ее связи с другими науками и ее значения для практики. Иначе говоря, чтобы учебник был вполне пригодным для самообразования. Такой характер учебника вызывается тем обстоятельством, что самостоятельная работа учащихся наших школ при ее современной перестройке должна приобрести гораздо больший размах и больший удельный вес, чем до сих пор.
2. Чтобы содержание курса и его изложение в возможно большей мере способствовали развитию математического мышления и помогали формированию у учащегося правильного материалистического взгляда на математику и другие науки.
3. Чтобы чтение курса пробуждало у учащегося интерес к алгебре и потребность к размышлениям над ее содержанием.
4. Чтобы учащиеся смогли ознакомиться с именами крупнейших русских и советских ученых и характером их работ, а также с именами крупнейших ученых других стран, имеющих выдающиеся заслуги в деле развития математических наук.
По мнению автора, содержание курса легко обозримо, развивается в логической связи последующего с предыдущим и, насколько это возможно, удовлетворяет принципу переходить к абстрактному от конкретного. В учебнике много примеров. Часто они предпосылаются определениям и утверждениям, которые естественным образом вытекают из этих примеров.
В начале курса освещен предмет математики, ее метод и ее практическое и культурное значение; даны разъяснения, помогающие учащимся освободиться от некоторых ошибочных взглядов на математику, которые в их среде нередко имеют место; разъяснен в некоторой мере вопрос об инициативном подходе к изучению математики.
В конце второй части курса освещены вопросы: об условиях необходимых и достаточных, о расширении понятия числа и об аксиоматическом методе в математике. Там же даны краткие исторические сведения о возникновении и развитии математических наук с древности и до наших дней.
Как научиться решать задачи [1989] Л. М. Фридман, Е. Н. Турецкий
В книге изложена сущность решения школьных математических задач, а также задач повышенной трудности. Она предназначена для учащихся старших классов средней школы, но ею могут пользоваться также учащиеся техникумов и ПТУ, вообще все, кто хочет научиться решать математические задачи. Решение задач занимает в математическом образовании огромное место. Поэтому обучению решения задач уделяется много внимания, но до сих пор, пожалуй, единственным методом такого обучения были показ способов решения определенных видов задач и значительная, порой изнурительная практика по овладению ими. Поэтому все пособия для учащихся по решению задач были построены в форме сборника задач (с ответами и с некоторыми указаниями к ним). В последние годы появился ряд пособий, в которых излагаются некоторые общие указания и рекомендации (эвристики) по решению задач, по поиску этих решений. В первую очередь это книги Д. Пойя, некоторые удачные пособия для поступающих в ВУЗы. Однако эти пособия излагают вопросы, связанные с решением математических задач, недостаточно полно, без необходимой системы, без учета тех реальных трудностей, с которыми сталкиваются учащиеся.
Психологические исследования проблемы обучения решению задач показывают, что основные причины несформированности у учащихся общих умений и способностей в решении задач состоят в том, что школьникам не даются необходимые знания о сущности задач и их решений, а поэтому они решают задачи, не осознавая должным образом свою собственную деятельность. У учащихся не вырабатываются отдельно умения и навыки в действиях, входящих в общую деятельность по решению задач, и поэтому им приходится осваивать эти действия в самом процессе решения задач, что многим школьникам не под силу. Не стимулируется постоянный анализ учащимися своей деятельности по решению задач и выделению в них общих подходов и методов, их теоретического осмысления и обоснования. Возникла необходимость разработки таких пособий, которые помогли бы преодолеть указанные причины и дали возможность учащимся планомерно сформировать у себя нужные умения и навыки в решении математических задач. Эта книга — первая попытка создать такое пособие.