Основные параметры и характеристики выпрямительных диодов

Основные параметры выпрямительных диодов

Для выпрямления низкочастотных переменных токов, то есть для превращения переменного тока в постоянный или пульсирующий, служат выпрямительные диоды, принцип действия которых основан на односторонней электронно-дырочной проводимости p-n-перехода. Диоды данного типа применяются в умножителях, выпрямителях, детекторах и т. д.

Производятся выпрямительные диоды с плоскостным либо с точечным переходом, причем площадь непосредственно перехода может составлять от десятых долей квадратного миллиметра до единиц квадратных сантиметров, в зависимости от номинального для данного диода выпрямленного за полупериод тока.

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодов

Вольт-амперная характеристика (ВАХ) полупроводникового диода имеет прямую и обратную ветви. Прямая ветвь ВАХ практически показывает связь тока через диод и прямого падения напряжения на нем, их взаимозависимость.

Обратная ветвь ВАХ отражает поведение диода при подаче на него напряжения обратной полярности, где ток через переход очень мал и практически не зависит от величины приложенного к диоду напряжения, пока не будет достигнут предел, при котором случится электрический пробой перехода и диод выйдет из строя.

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодов

Первой и главной характеристикой выпрямительного диода является максимально допустимое обратное напряжение. Это то напряжение, приложив которое к диоду в обратном направлении, можно будет еще уверенно утверждать, что диод его выдержит, и что данный факт не скажется отрицательно на дальнейшей работоспособности диода. Но если данное напряжение превысить, то нет гарантии, что диод не будет пробит.

Данный параметр для разных диодов отличается, лежит он в диапазоне от десятков вольт до нескольких тысяч вольт. Например для популярного выпрямительного диода 1n4007 максимальное постоянное обратное напряжение равно 1000В, а для 1n4001 – составляет всего 50В.

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодов

Диод выпрямляет ток, поэтому следующей важнейшей характеристикой выпрямительного диода будет средний ток диода — средняя за период величина выпрямленного постоянного тока, текущего через p-n-переход. Для выпрямительных диодов данный параметр может составлять от сотен миллиампер до сотен ампер.

Максимальный импульсный ток диода — Ifsm (единичный импульс) и Ifrm (повторяющиеся импульсы)

Максимальный импульсный ток диода — это пиковое значение тока, которое данный выпрямительный диод способен выдержать только определенное время, которое указывается в документации вместе с этим параметром. Например, диод 10А10 способен выдержать единичный импульс тока в 600А длительностью 8,3мс.

Что касается повторяющихся импульсов, то их ток должен быть таким, чтобы средний ток уложился бы в допустимый диапазон. Например, повторяющиеся прямоугольные импульсы с частотой 20кГц диод 80EBU04 выдержит даже если их максимальный ток составит 160А, однако средний ток должен оставаться не более 80А.

Средний обратный ток диода показывает средний за период ток через переход в обратном направлении. Обычно это значение меньше микроампера, максимум — единицы миллиампер. Для 1n4007, к примеру, средний обратный ток не превышает 5мкА при температуре перехода +25°С, и не превышает 50мкА при температуре перехода +100°С.

Среднее прямое напряжение диода — Vf (падение напряжения на переходе)

Среднее прямое напряжение диода при указанном значении среднего тока. Это то напряжение, которое оказывается приложено непосредственно к p-n-переходу диода при прохождении через него постоянного тока указанной в документации величины. Обычно не более долей, максимум — единиц вольт.

Например в документации для диода EM516 приводится прямое напряжение в 1,2В для тока в 10А, и 1,0В при токе 2А. Как видим, сопротивление диода нелинейно.

Дифференциальное сопротивление диода

Дифференциальное сопротивление диода выражает отношение приращения напряжения на p-n-переходе диода к вызвавшему это приращение небольшому приращению тока через переход. Обычно от долей Ома до десятков Ом. Его можно вычислить по графикам зависимости падения напряжения от прямого тока.

Например, для диода 80EBU04 приращение тока на 1А (от 1 до 2А) дает приращение падения напряжения на переходе в 0,08В. Следовательно дифференциальное сопротивление диода в этой области токов равно 0,08/1 = 0,08Ом.

Средняя рассеиваемая мощность диода Pd

Средняя рассеиваемая мощность диода — это средняя за период мощность, рассеиваемая корпусом диода, при протекании через него тока в прямом и обратном направлениях. Данная величина зависит от конструкции корпуса диода, и может варьироваться от сотен милливатт до десятков ватт.

Например, для диода КД203А средняя рассеиваемая корпусом мощность составляет 20 Вт, данный диод можно даже установить при необходимости на радиатор для отвода тепла.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Принцип работы, характеристика и разновидности выпрямительных диодов

Выпрямительный диод это прибор проводящий ток только в одну сторону. В основе его конструкции один p-n переход и два вывода. Такой диод изменяет ток переменный на постоянный. Помимо этого, их повсеместно практикуют в электросхемах умножения напряжения, цепях, где отсутствуют жесткие требования к параметрам сигнала по времени и частоте.

Принцип работы

Принцип работы этого устройства основывается на особенностях p-n перехода. Возле переходов двух полупроводников расположен слой, в котором отсутствуют носители заряда. Это запирающий слой. Его сопротивление велико.

При воздействии на слой определенного внешнего переменного напряжения, толщина его становится меньше, а впоследствии и вообще исчезнет. Возрастающий при этом ток называют прямым. Он проходит от анода к катоду. Если внешнее переменное напряжение будет иметь другую полярность, то запирающий слой будет больше, сопротивление возрастет.

Разновидности устройств, их обозначение

По конструкции различают приборы двух видов: точечные и плоскостные. В промышленности наиболее распространены кремниевые (обозначение — Si) и германиевые (обозначение — Ge). У первых рабочая температура выше. Преимущество вторых — малое падение напряжения при прямом токе.

Принцип обозначений диодов – это буквенно-цифровой код:

Вольт-амперная характеристика

Вольт-амперную характеристику (ВАХ) выпрямительного диода можно представить графически. Из графика видно, что ВАХ устройства нелинейная.

В начальном квадранте Вольт-амперной характеристики ее прямая ветвь отражает наибольшую проводимость устройства, когда к нему приложена прямая разность потенциалов. Обратная ветвь (третий квадрант) ВАХ отражает ситуацию низкой проводимости. Это происходит при обратной разности потенциалов.

Реальные Вольт-амперные характеристики подвластны температуре. С повышением температуры прямая разность потенциалов уменьшается.

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодов

Из графика Вольт-амперной характеристики следует, что при низкой проводимости ток через устройство не проходит. Однако при определенной величине обратного напряжения происходит лавинный пробой.

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодов

ВАХ кремниевых устройств отличается от германиевых. ВАХ приведены в зависимости от различных температур окружающей среды. Обратный ток кремниевых приборов намного меньше аналогичного параметра германиевых. Из графиков ВАХ следует, что она возрастает с увеличением температуры.

Важнейшим свойством является резкая асимметрия ВАХ. При прямом смещении – высокая проводимость, при обратном – низкая. Именно это свойство используется в выпрямительных приборах.

Коэффициент выпрямления

Анализируя приборные характеристики, следует отметить: учитываются такие величины, как коэффициент выпрямления, сопротивление, емкость устройства. Это дифференциальные параметры.

Он отражает качество выпрямителя.

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодов

Его можно рассчитать: он будет равен отношению прямого тока прибора к обратному. Такой расчет приемлем для идеального устройства. Значение коэффициента выпрямления может достигать нескольких сотен тысяч. Чем он больше, тем лучше выпрямитель делает свою работу.

Основные параметры устройств

Какие же параметры характеризуют приборы? Основные параметры выпрямительных диодов:

Исходя из максимального значения прямого тока, выпрямительные диоды разделяют на:

Существуют силовые устройства, зависящие от формы, материала, типа монтажа. Наиболее распространенные из них:

Выпрямительные схемы

Схемы включения силовых устройств бывают различными. Для выпрямления сетевого напряжения они делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Большинство из них однофазные. Ниже представлена конструкция такого однополупериодного выпрямителя и двух графиков напряжения на временной диаграмме.

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодов

Переменное напряжение U1 подается на вход (рис. а). Справа на графике оно представлено синусоидой. Состояние диода открытое. Через нагрузку Rн протекает ток. При отрицательном полупериоде диод закрыт. Поэтому к нагрузке подводится только положительная разность потенциалов. На рис. в отражена его временная зависимость. Эта разность потенциалов действует в течение одного полупериода. Отсюда происходит название схемы.

Самая простая двухполупериодная схема состоит из двух однополупериодных. Для такой конструкции выпрямления достаточно двух диодов и одного резистора.

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодов

Диоды пропускают только положительную волну переменного тока. Недостатком конструкции является то, что в полупериод переменная разность потенциалов снимается лишь с половины вторичной обмотки трансформатора.

Если в конструкции вместо двух диодов применить четыре коэффициент полезного действия повысится.

Выпрямители широко используются в различных сферах промышленности. Трехфазный прибор задействован в автомобильных генераторах. А применение изобретенного генератора переменного тока способствовало уменьшению размеров этого устройства. Помимо этого, увеличилась его надежность.

В высоковольтных устройствах широко применяют высоковольтные столбы, которые скомпонованы из диодов. Соединены они последовательно.

Импульсные приборы

Импульсным называют прибор, у которого время перехода из одного состояния в другое мало. Они применяются для работы в импульсных схемах. От своих выпрямительных аналогов такие приборы отличаются малыми емкостями p-n переходов.

Для приборов подобного класса, кроме параметров, указанных выше, следует отнести следующие:

В быстродействующих импульсных схемах широко применяют диоды Шотки.

Импортные приборы

Отечественная промышленность производит достаточное количество приборов. Однако сегодня наиболее востребованы импортные. Они считаются более качественными.

Импортные устройства широко используются в схемах телевизоров и радиоприемников. Их также применяют для защиты различных приборов при неправильном подключении (неправильная полярность). Количество видов импортных диодов разнообразно. Полноценной альтернативной замены их на отечественные пока не существует.

Источник

Выпрямительные диоды: устройство, конструктивные особенности и основные характеристики

Основное предназначение выпрямительных диодов — преобразование напряжения. Но это не единственная сфера применения данных полупроводниковых элементов. Их устанавливают в цепи коммутации и управления, используют в каскадных генераторах и т.д. Начинающим радиолюбителям будет интересно узнать, как устроены эти полупроводниковые элементы, а также их принцип действия. Начнем с общих характеристик.

Устройство и конструктивные особенности

Основной элемент конструкции – полупроводник. Это пластина кристалла кремния или германия, у которого имеются две области р и n проводимости. Из-за этой особенности конструкции она получила название плоскостной.

При изготовлении полупроводника обработка кристалла производится следующим образом: для получения поверхности р-типа ее обрабатывают расплавленным фосфором, а р-типа – бором, индием или алюминием. В процессе термообработки происходит диффузия этих материалов и кристалла. В результате образуется область с р-n переходом между двумя поверхностями с различной электропроводимостью. Полученный таким образом полупроводник устанавливается в корпус. Это обеспечивает защиту кристалла от посторонних факторов воздействия и способствует теплоотводу.

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодовКонструкция (1), внешний вид (2) и графическое отображение выпрямительного диода(3)

Обозначения:

Как уже упоминалось, в качестве основы р-n перехода используются кристаллы кремния или германия. Первые применяются значительно чаще, это связано с тем, что у германиевых элементов величина обратных токов значительно выше, что существенно ограничивает допустимое обратное напряжение (оно не превышает 400 В). В то время как у кремниевых полупроводников эта характеристика может доходить до 1500 В.

Классификация по мощности

Мощность элементов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:

Перечень основных характеристик

Ниже приведена таблица, с описанием основных параметров выпрямительных диодов. Эти характеристики можно получить из даташита (технического описания элемента). Как правило, большинство радиолюбителей к этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодовТаблица основных характеристик выпрямительных диодов

Заметим, что в большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.

Принцип работы

Проще всего объяснить принцип действия выпрямительных диодов на примере. Для этого смоделируем схему простого однополупериодного выпрямителя (см. 1 на рис. 6), в котором питание поступает от источника переменного тока с напряжением UIN (график 2) и идет через VD на нагрузку R.

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодовРис. 6. Принцип работы однодиодного выпрямителя

Во время положительного полупериода, диод находится в открытом положении и пропускает через себя ток на нагрузку. Когда приходит очередь отрицательного полупериода, устройство запирается, и питание на нагрузку не поступает. То есть происходит как бы отсечение отрицательной полуволны (на самом деле это не совсем верно, поскольку при данном процессе всегда имеется обратный ток, его величина определяется характеристикой Iобр).

В результате, как видно из графика (3), на выходе мы получаем импульсы, состоящие из положительных полупериодов, то есть, постоянный ток. В этом и заключается принцип работы выпрямительных полупроводниковых элементов.

Заметим, что импульсное напряжение, на выходе такого выпрямителя подходить только для питания малошумных нагрузок, примером может служить зарядное устройство для кислотного аккумулятора фонарика. На практике такую схему используют разве что китайские производители, с целью максимального удешевления своей продукции. Собственно, простота конструкции является единственным ее полюсом.

К числу недостатков однодиодного выпрямителя можно отнести:

Заметим, что эти недостатки можно несколько уменьшить, для этого достаточно сделать простой фильтр на базе высокоемкостного электролита (1 на рис. 7).

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодовРис. 7. Даже простой фильтр позволяет существенно снизить пульсации

Принцип работы такого фильтра довольно простой. Электролит заряжается во время положительного полупериода и разряжается, когда наступает черед отрицательного. Емкость при этом должна быть достаточной для поддержания напряжения на нагрузке. В этом случае импульсы несколько сгладятся, примерно так, как продемонстрировано на графике (2).

Приведенное решение несколько улучшит ситуацию, но ненамного, если запитать от такого однополупериодного выпрямителя, например, активные колонки компьютера, в них будет слышаться характерный фон. Для устранения проблемы потребуются более радикальное решение, а именно диодный мост. Рассмотрим принцип работы этой схемы.

Устройство и принцип работы диодного моста

Существенно отличие такой схемы (от однополупериодной) заключается в том, что напряжение на нагрузку подается в каждый полупериод. Схема включения полупроводниковых выпрямительных элементов продемонстрирована ниже.

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодовПринцип работы диодного моста

Как видно из приведенного рисунка в схеме задействовано четыре полупроводниковых выпрямительных элемента, которые соединены таким образом, что при каждом полупериоде работают только двое из них. Распишем подробно, как происходит процесс:

Как видно по результату (график 3), в процессе задействовано оба полупериода и как бы не менялось напряжение на входе, через нагрузку оно идет в одном направлении. Такой принцип работы выпрямителя называется двухполупериодным. Его преимущества очевидны, перечислим их:

Помехи от мостовой схемы незначительны, и становятся еще меньше при использовании фильтрующей электролитической емкости. Благодаря этому такое решение можно использовать в блоках питания, практически, для любых радиолюбительских конструкций, в том числе и тех, где используется чувствительная электроника.

Заметим, совсем не обязательно использовать четыре выпрямительных полупроводниковых элемента, достаточно взять готовую сборку в пластиковом корпусе.

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодовДиодный мост в виде сборки

Такой корпус имеет четыре вывода, два на вход и столько же на выход. Ножки, к которым подключается переменное напряжение, помечаются знаком «

» или буквами «AC». На выходе положительная ножка помечается символом «+», соответственно, отрицательная как «-».

На принципиальной схеме такую сборку принято обозначать в виде ромба, с расположенным внутри графическим отображением диода.

На вопрос что лучше использовать сборку или отдельные диоды нельзя ответить однозначно. По функциональности между ними нет никакой разницы. Но сборка более компактна. С другой стороны, при ее выходе из строя поможет только полная замена. Если же в этаком случае используются отдельные элементы, достаточно заменить вышедший из строя выпрямительный диод.

Источник

Характеристики и принцип действия выпрямительных диодов

Существует немало устройств, созданных с целью преобразования электрического тока, и выпрямительные диоды – одни из них.

Выпрямительный диод – преобразователь тока переменного в постоянный. Является одним из видов полупроводников. Широкое применение получил благодаря основной характеристике – переводу электрического тока строго в одном направлении.

Принцип действия

Необходимый эффект при работе устройства создают особенности p-n перехода. Заключаются в том, что рядом с переходом двух полупроводников встраивается слой, который характеризуется двумя моментами: большим сопротивлением и отсутствием носителей заряда. Далее при воздействии на данный запирающий слой переменного напряжения извне толщина его уменьшается и впоследствии исчезает. Возрастающий во время этого ток и является прямым током, который проходит от анода к катоду. В случае перемены полярности внешнего переменного напряжения запирающий слой будет больше, и сопротивление неминуемо возрастет.

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодов

ВАХ выпрямительного диода (вольт-амперная характеристика) также дает представление о специфике работы выпрямителя и является нелинейной. Выглядит следующим образом: существует две ветви – прямая и обратная. Первая отражает наибольшую проводимость полупроводника при возникновении прямой разницы потенциалов. Вторая указывает на значение низкой проводимости при обратной разнице потенциалов.

Вольт-амперные характеристики выпрямителя прямо пропорциональны температуре, с повышением которой разность потенциалов сокращается. Электрический ток не пройдет через устройство в случае низкой проводимости, но лавинный пробой происходит в случае возросшего до определенного уровня обратного напряжения.

Использование сборки

При эксплуатации выпрямительного полупроводникового диода польза извлекается только из половины волн переменного тока, соответственно, безвозвратно теряется более половины входного напряжения.

С целью улучшить качество преобразования переменного тока в постоянный используется сборка из четырех устройств – диодный мост. Выгодно отличается тем, что пропускает ток на протяжении каждого полупериода. Диодные мосты производят в виде комплекта, заключенного в пластиковый корпус.

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодов Принципиальная схема диодного моста

Физико-технические параметры

Основные параметры выпрямительных диодов базируются на таких значениях:

Выпрямители промышленность выпускает с разными физическими характеристиками. Соответственно, устройства имеют разную форму и способ монтажа. Разделяются при этом на три группы:

Выбор выпрямительных диодов

При приобретении устройства необходимо руководствоваться такими параметрами:

В зависимости от физических характеристик на корпус устройства наносится соответствующее обозначение. Каталог с маркировкой выпрямительных диодов представлен в специализированном справочнике. Необходимо знать, что маркировка импортных аналогов отличается от отечественных.

Также стоит обратить внимание на то, что выпрямительные схемы отличаются по количеству фаз:

Диод Шоттки

Отдельную позицию занимает диод Шоттки. Изобрели его в связи с растущими потребностями в развивающейся отрасли радиоэлектроники. Основное отличие его от остальных диодов заключается в том, что в его конструкцию заложен металл-полупроводник как альтернатива p-n переходу. Соответственно, диод Шоттки обладает своими, уникальными свойствами, которыми не могут похвастаться кремниевые выпрямительные диоды. Некоторые из них:

При изготовлении диода Шоттки применяют такие материалы, как кремний и арсенид галлия, но иногда применяется и германий. Свойства материалов немного отличаются, но в любом случае, максимально допустимое обратное напряжение для выпрямителя Шоттки составляет не более 1200 V.

Основные параметры и характеристики выпрямительных диодов. Смотреть фото Основные параметры и характеристики выпрямительных диодов. Смотреть картинку Основные параметры и характеристики выпрямительных диодов. Картинка про Основные параметры и характеристики выпрямительных диодов. Фото Основные параметры и характеристики выпрямительных диодов

В противовес всем достоинствам конструкция данного вида имеет и минусы. Например, в сборке моста устройство категорически не воспринимает превышение обратного тока. Нарушение условия приводит к поломке выпрямителя. Также малое падение напряжения происходит при невысоком напряжении около 60-70 V. Если значение превышает этот показатель, то устройство превращается в обыкновенный выпрямитель.

Стоит отметить, что достоинства диода мощного выпрямительного Шоттки значительно превышают недостатки.

Диод-стабилитрон

Для стабилизации напряжения используют специальное приспособление, способное работать в режиме пробоя, – стабилитрон, зарубежное название которого «диод Зенера». Выполняет свою функцию устройство, работая в режиме пробоя при напряжении обратного смещения. Возрастание силы тока происходит в момент пробоя, одновременно опускается до минимума дифференциальное значение, вследствие чего напряжение стабильное и охватывает достаточно серьезный диапазон обратных токов.

Практическое использование выпрямительного диода

В связи с неудержимым развитием научно-технического прогресса применение выпрямителей затронуло все сферы жизнедеятельности человека. Диоды силовые выпрямительные эксплуатируются в таких узлах и механизмах:

В повседневной жизни выпрямители используют в различных транзисторных схемах. Применяют в основном маломощные устройства как в виде однополупериодного выпрямителя, так и виде диодного моста. Например, диоды выпрямительного блока генератора хорошо известны автолюбителям.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *