Окуляр и объектив в чем разница

Объектив и окуляр микроскопа

Окуляр и объектив в чем разница. Смотреть фото Окуляр и объектив в чем разница. Смотреть картинку Окуляр и объектив в чем разница. Картинка про Окуляр и объектив в чем разница. Фото Окуляр и объектив в чем разницаВ одной из наших предыдущих статьей мы рассказывали о механической системе микроскопа. Пришло время поговорить и об оптической. Самые важные и незаменимые ее элементы – объектив и окуляр микроскопа. Иногда этих аксессуаров бывает несколько – все зависит от модели оптического прибора. В детских микроскопах редко встретишь больше одного объектива и одного окуляра. А вот комплектация профессиональной модели может включать, например, шесть объективов и четыре окуляра. Зачем такое разнообразие – давайте разбираться!

Окуляр устанавливается сверху, в него мы смотрим. Вместе с монокулярным микроскопом поставляется как минимум один окуляр, а вот для бинокулярных моделей нужна уже хотя бы пара. Объектив микроскопа – аксессуар, который «смотрит» на образец. Он расположен прямо над предметным столиком. В самые простые детские микроскопы устанавливают один объектив, в микроскопы любительского и профессионального уровня – не менее трех. Если объективов несколько, они фиксируются в револьверном устройстве – механизме, который позволяет их менять прямо во время наблюдений.

У каждого окуляра и объектива есть свое увеличение. А увеличение микроскопа высчитывается по формуле: кратность окуляра умножить на кратность объектива. Поэтому чем больше в комплекте поставки окуляров и объективов, тем больше в микроскопе вариантов увеличений. Рассмотрим на примере. Есть два окуляра кратностью 10х и 12,5х и три объектива с кратностью 10х, 40х и 100х. На какое увеличение микроскопа можно рассчитывать? Ответ в табличке ниже.

Объектив 10хОбъектив 40хОбъектив 100х
Окуляр 10х1004001000
Окуляр 12,5х1255001250

Например, мы видим, что взяв окуляр 10х и объектив 40х микроскопа, мы получили увеличение в 400 крат. Это простое перемножение характеристик выбранных оптических аксессуаров.

В нашем интернет-магазине вы можете найти микроскопы с разной комплектацией и возможностями. Раздел представлен по ссылке.

Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.

Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.

Источник

Объективы и окуляры микроскопов

Классификация линзовых объективов

Объективы микроскопов можно классифицировать по различным признакам, например, по спектральной области, для которой они рассчитаны и применяются, расчетной оптической длине тубуса, по способу освещения наблюдаемого объекта, возможности использования покровного стекла, иммерсионной жидкости и т.п.

Наибольшее предпочтение заслуживает классификация объективовпо степени их коррекции, которая различает следующие типы объективов: монохроматы, ахроматы и апохроматы.

Монохроматы – это объективы, у которых аберрации исправлены для одной длины волны или узкой спектральной области. В первую очередь, у них исправляются сферическая аберрация, кома и астигматизм.

Объективы, у которых ахроматизация выполнена для одной основной и двух дополнительных длин волн, называются ахроматами. У таких объективов исправлению подлежат: сферическая аберрация, кома, астигматизм, хроматическая аберрация положения, отчасти хроматическая аберрация увеличения и сферохроматическая аберрация.

У апохроматических объективов спектральная область расширена и ахроматизация выполняется для трех дополнительных длин волн. У объективов с апохроматической коррекцией кроме хроматизма положения, сферической аберрации, комы и астигматизма достаточно хорошо исправляются также вторичный спектр и сферохроматическая аберрация благодаря введению в оптическую схему линз из кристаллов и стекол с особым ходом частных относительных дисперсий. Кроме того, отчасти исправляется хроматическая аберрация увеличения.

Для количественной оценки качества изображения вычисляются волновые аберрации, которые пока в микроскопии являются основным критерием оценки и сравнения объективов. У ахроматов для точки на оси волновая аберрация основного цвета, как правило, не превышает 0.25l (т.е. выполняется критерий Рэлея), а для всей спектральной области, на которую рассчитаны ахроматы, не более 0.5l. У апохроматических объективов сферическая аберрация для основного цвета обычно не превышает (0.1 – 0.15)λ. Для спектраль­ных линий C и F волновые аберрации не более 0.25λ, для линии G’ они лежат в пределах от 0.25 до 0.5λ.

Также выпускаются объективы с плоской поверхностью изображения –планобъективы. Эти объективы имеют увеличенное поле зрения по сравнению с обычными ахроматами и апохроматами. Планобъективы по степени коррекции делятся на планмонохроматы, планахроматы и планапохроматы. Требования к коррекции аберраций для точки на оси планобъективов такие же, как и для соответствующих монохроматов, ахроматов и апохроматов. Но, в отличие от последних, у планобъективов существенно лучше исправлены кривизна изображения и астигматизм, а волновые аберрации в пределах всего поля зрения для внеосевых точек предмета не превышают (0.5 –1.0)λ.

Окуляры микроскопов

Окуляры (от лат. оculus, что означает «глаз») представляют собой лупы, с помощью которых наблюдается промежуточное изображение, создаваемое объективом и тубусной линзой. Кроме того, он проецирует выходной зрачок объектива на расстоянии, удобном для работы. Окуляр работает в узких пучках лучей, поэтому его сферическая и сферохроматическая аберрации малы по сравнению с остаточными аберрациями объектива и не влияют на качество изображения, даваемого объективом микроскопа. В некоторых окулярах исправляются хроматическая разность увеличения и дисторсия. Применение того или иного окуляра определяется типом объектива и характером исправления аберраций. Величина поля зрения микроскопа определяется размером диафрагмы поля зрения окуляра.

Окуляры не являются простыми линзами, а представляют собой скорригированные оптические системы, состоящие из нескольких линз. Обычно окуляр дает дополнительное увеличение Г=10x. Промежуточное изображение находится на расстоянии чтения, составляющем 25 см. Общее увеличение микроскопа рассчитывается по следующей формуле:
Vмикроскопа=Vобъектива x Гокуляра.

На практике принято, чтобы один из окуляров мог фокусироваться, что позволяет уравнивать небольшую разницу в установке на резкость для обоих глаз.

В зависимости от своих параметров окуляры подразделяются на отдельные классы. Отличия между ними проявляются при больших полях зрения и, в особенности, на краю изображения.

Окуляры сконструированы таким образом, что промежуточное изображение микроскопа находится на расстоянии от них. Поэтому удобно размещать в плоскости промежуточного изображения различные шкалы, сетки или другие сравнительные элементы, можно производить необходимые измерения.

Унификация характеристик объективов и окуляров

До недавнего времени использовались объективы с различными унифицированными параметрами технических характеристик [1]. В зависимости от увеличения и числовой апертуры, а также типа коррекции встречались объективы с различной высотой (расстояние от объектива до опорной плоскости объектива). Эта величина колебалась в довольно широких пределах – от 12 до 70 мм, что приводило к неудобству работы на револьверном устройстве.

Хроматическая разность увеличения у старых ахроматических объективов различных типов не была постоянной, а изменялась от нуля (для «слабых» объективов) до 2% (для объективов с большим масштабом увеличения). Это создавало дополнительные неудобства при работе. Так, например, требовалось использование в микроскопах двойного комплекта окуляров: Гюйгенса – для работы с объективами малых увеличений и компенсационных – для работы со «средними» и «сильными» объективами. К тому же, старые компенсационные окуляры обладали серьезным недостатком – непостоянством хроматизма увеличения по полю зрения, что приводило к наличию заметной окраски в плоскости промежуточного изображения микроскопа. Проведенная в последние годы унификация характеристик объективов и окуляров дала следующие результаты.

Оценка качества изображения микрообъективов

Для оценки разрешающей способности объективов микроскопов пользуются препаратами микроскопических элементов растительных и животных образований. К наиболее распространенным препаратам относятся известковые панцири микроскопических водорослей – диатомей. Ширина и расстояние между линейными элементами этих панцирей для каждой определенного вида диатомеи имеют определенные значения с наибольшими отступлениями от средних величин. Общепринято пользоваться небольшим набором препаратов различных определенных диатомей в количестве не свыше десяти. Они подобраны таким образом, что среди них можно найти структурные элементы с расстояниями от 0.25 до 1.80 мкм [1].

Одновременно с разрешающей способностью исследуемого объектива опытный исследователь обнаруживает дефекты объектива и оценивает его качество. Оценка качества изображения имеет не менее важное значение, чем определение разрешающей способности объектива.

Теория дифракционной точки

При испытании объективов, их сборке и контроле пользуются весьма простыми приемами наблюдения «светящихся точек», полученных в виде малых отверстий различных размеров в тонком слое серебра, осажденном на стеклянной пластинке. Наблюдая изображения этих отверстий в проходящем свете, можно весьма отчетливо обнаружить все недостатки объектива: недостаточную центрировку, натяжение в стекле и т.д. [2].

Критерием разрешающей способности микроскопа является предел, до которого два маленьких предмета воспринимаются еще как раздельные объекты. Расстояние dо, при котором имеет место такой предельный случай, может быть теоретически рассчитано.

Необходимо знать, что любая точка предмета – пусть это будет очень маленькое отверстие в металлической фольге 1 (рисунок 1) – не отображается объективом и тубусной линзой 2 как светлый диск с резкими краями, а как размытое пятно, окруженное дифракционными кольцами 3. Эта картина носит название «диска Эри». Дифракционные кольца возникают в результате ограниченной апертуры объектива, т.е. объектив играет роль «отверстия». Чем больше апертура объектива, тем меньше будет расстояние dо
Окуляр и объектив в чем разница. Смотреть фото Окуляр и объектив в чем разница. Смотреть картинку Окуляр и объектив в чем разница. Картинка про Окуляр и объектив в чем разница. Фото Окуляр и объектив в чем разница

Числовой коэффициент «1.22» получен расчетным путем для случая, представленного на рисунке 2. Кривые интенсивности двух дифракционных фигур накладываются друг на друга: если две точки находятся на большом расстоянии друг от друга, то они легко наблюдаются как раздельные объекты. Если последовательно выбирать все более короткое расстояние, то наступит предельный случай, когда главный максимум объекта 2(—) совпадет с первым минимумом объекта 1(-). В случае наложения профилей возникают два максимума яркости, разделенных минимумом, интенсивность в котором примерно на 20 % меньше интенсивности в обоих максимумах. Этого как раз еще достаточно для человеческого глаза, чтобы видеть две раздельные точки (критерий Релея).

Наряду с методом исследования «по дифракционной точке», широко пользуются «пластинкой Аббе», с помощью которой производятся испытания объективов по эффективности исправления сферической и хроматической аберраций, а также определяется толщина покровного стекла, соответствующая наилучшему исправлению объектива. «Пластинка Аббе» – это клинообразная узкая полоска, толщина которой вдоль длинной стороны изменяется от 0.09 до 0.24 мм. Нижняя поверхность клина покрыта непрозрачным слоем серебра, на котором резцом процарапаны группы линий или просветов, параллельных длинной стороне пластинки; пластинка наклеена на обычное предметное стекло. Рваные при большом увеличении края серебряных полосок являются очень удобным, вполне контрастным предметом наблюдения.

Рассматривая полоску в различных условиях прямого и косого освещения, в центре и на краю поля, при выведении микроскопа из положения, соответствующего наилучшему изображению, в обе стороны от него, опытный наблюдатель может оценить в полной мере качество исправления объектива.

Источник

Компоненты микроскопа (часть 1)

В предыдущей главе мы провели обзор типов микроскопов и методов наблюдейния в микроскопии. Глава 2 посвящена компонентам микроскопа.

В отличие от лупы, микроскоп как правило имеет несколько ступеней увеличения. Функциональные и конcтруктивно-технологические части микроскопа предназначены для обеспечения работы микроскопа и получения устойчивого, максимально точного, увеличенного изображения объекта. Микроскоп включает в себя три основные функциональные части.

Осветительная часть предназначена для создания светового потока, который позволяет осветить объект таким образом, чтобы последующие части микроскопа предельно точно выполняли свои функции.

Осветительная часть включает источник света (лампа и электрический блок питания), и оптико-механическую систему (коллектор, конденсор, полевая и апертурная регулируемые ирисовые диафрагмы).

Воспроизводящая часть предназначена для воспроизведения объекта в плоскости изображения с требуемым для исследования качеством изображения и увеличения (т.е. для построения такого изображения, которое как можно точнее и во всех деталях воспроизводило бы объект с соответствующим для данной оптики микроскопа разрешением, увеличением, контрастом и цветопередачей).

Воспроизводящая часть включает объектив и промежуточную оптическую систему.

Визуализирующая часть предназначена для получения реального изображения объекта на сетчатке глаза, фотопленке или пластинке, на экране телевизионного или компьютерного монитора.

Визуализирующая часть включает монокулярную, бинокулярную или тринокулярную визуальную насадку с наблюдательной системой — окулярами, которые работают как лупа.

Объективы

Рассмотрим наиболее важные характеристики объектива, которые определяют: 1) кривизну, или плоскостность поля зрения (часть поля зрения, находящуюся в фокусе); 2) увеличение и разрешающую способность и 3) цвето-коррекцию.

Основные параметры объективов устанавливаются общепризнанным стандартом DIN (Deutsche Industrial Normen). Согласно этому стандарту устанавливается длина тубуса, равная 160 мм, высота объектива 45 мм (расстояние от плоскости предмета до опорного торца объектива), стандартные диаметры окуляров, резьба объективов, кодировка объективов в виде цветной полоски вокруг объектива (красной для увеличения 4Х, желтой — 10Х, белой — 100Х и т.д.).

Тубус — это расстояние от верхней линзы окуляра до плоскости зрачка объектива (примерно совпадающей с последней линзой объектива). Некоторые фирмы выпускают объективы на тубус «бесконечность», что означает, что изображение, даваемое объективом, образуется в бесконечности, а окуляр приводит это изображение в определенную плоскость. Объективы на тубус 160 мм (или 170 мм) включают в себя стандартные ахроматические объективы, при использовании которых в фокусе оказывается около 2/3 поля зрения; Полупланахромат объективы — 80 % поля зрения в фокусе и Планахромат объективы — 100% поля зрения в фокусе.

На биологических микроскопах MicroOptix MX100 установлены 4 полуплан ахромат объектива: 4x/0,10, 10x/0,25, 40x/0,65, 100x/1,25

Следует внимательно изучать документацию производителя: некоторые используют термин “flat field” для обозначения полуплоского, а “plan” — полностью плоского поля. Другие используют для этого же соответственно термины “achromatic” и “plan”. У одних производителей “microplan” обозначает полуплоское поле, у других — совершенно плоское. Поэтому внимательно читайте литературу.

Объектив одного стандартного DIN микроскопа можно установить на другой DIN микроскоп, при этом сохраняется парфокальность и центрировка (объяснение этих терминов приведено далее). Справедливо то, что объективы, рассчитанные на определенную длину тубуса, можно устанавливать на разные микроскопы «старого образца», правда при этом, как минимум, теряется парфокальность.

Цветокоррекция: По цветокоррекции (исправлению хроматической аберрации положения) объективы разделяются на ахроматические, полуапохроматические (флюоритовые) и апохроматические.

У ахроматических объективов исправлен хроматизм положения для двух длин волн — красных и синих лучей, т.е. фокус для этих лучей сводится в одну точку. Зеленые лучи имеют более короткий фокус. По этой причине контуры в изображении объекта имеют цветную кайму.

Самые часто используемые красители — гематоксилин и эозин (H&E), которые имеют соответственно красный и синий цвет. Не правда ли замечательно, что для окрашивания большинства ваших препаратов применяется H&E, а большинство ваших объективов — ахроматы?

Флюоритовые объективы используют флюоритовое стекло, которое сводит все области спектра ближе к одному фокусу. По исправлению хроматической аберрации положения эти объективы занимают промежуточное положение между ахроматами и апохроматами.

Апохроматические объективы полностью выравнивают фокус трех основных цветов и сводят все остальные области спектра практически к одинаковому фокусу.

Чем выше качество объектива, тем выше его цена, достигаемое увеличение и необходимость критической фокусировки из-за снижения глубины резкости.

Увеличение и разрешающая способность: С ахроматическими объективами можно работать с увеличением микроскопа до 1000х N.A. (N.A.или А — численная апертура объектива). Дальнейшее повышение увеличения не выявляет новые подробности в объекте и может привести только к ухудшению качества изображения. С флюоритовыми объективами можно работать без существенного ухудшения качества изображения до увеличения 1500А; с апохроматами — до 2000А.

Таким образом, при работе с апохроматом 100Х можно добиться увеличения 2000Х, получив ту же разрешающую способность, что и при работе с ахроматом 100Х при увеличении 1000Х. Вопрос к исследователю – стоит ли игра свеч?

Пример:
Ахроматический иммерсионный объектив 100Х с A=1,25 можно использовать для получения увеличения до 1250Х; флюоритовый объектив — до 1875Х и апохроматический — до 2500Х.

Снижение глубины резкости означает, что неопытный пользователь может пройти фокальную плоскость препарата, не заметив ее. Поверьте мне, апохроматические объективы настолько же сложны в применении, насколько высока их стоимость.

Общеизвестно, что чем лучше микроскоп, тем сложнее работать с ним. Для этого необходима более высокая квалификация пользователя.

Выше мы упомянули новый термин — численная апертура (N.A.) объектива. (Чаще в литературе численная апертура называется просто апертурой и обозначается буквой А; прим. редактора). Численная апертура объектива определяет разрешающую способность микроскопа, т.е. способность давать раздельное изображение двух соседних элементов препарата.

Для каждого препарата существует увеличение, при котором его видно лучше всего, и это, как правило, не самое высокое увеличение микроскопа. Однако при максимальном увеличении все три класса упомянутых выше объективов должны давать одинаковое разрешение. Чем меньше детали, которые вам нужно исследовать, тем лучше должен быть объектив, т.е.он должен обладать наивысшей разрешающей способностью.

Давайте представим себе самый мелкий объект, который можно исследовать (то есть увидеть его полностью и с хорошим разрешением). Сделаем не совсем верное, но полезное предположение, что длина волны света — 0,2 микрон. Один дюйм равен 25,4 мм, в каждом миллиметре 1000 микрон, так что мы говорим о 0,2 тысячной доли миллиметра; или 1/5 от 25400-ой доли дюйма. Поскольку длина волны света должна быть меньше, чем рассматриваемый объект (свет должен проходить от центра через все края), то можно считать, что самая мелкая деталь, которую можно исследовать под оптическим микроскопом, имеет размер 0,25 микрон. При этом микроскоп должен быть чистым, правильно настроенным и находиться в отличном рабочем состоянии.

Существует устройство, используемое для измерения при помощи микроскопа, точность которого, как утверждается, равна 1/8 микрона (0,125 микрон). (Мы обсудим его в разделе, посвященном измерению).

Защита фронтальной линзы объектива: Обычно объективы (чаще всего 100Х, реже 40Х и 20Х) выполняются в пружинящей оправе, предохраняющей повреждение фронтальной линзы объектива при давлении на предметное стекло. При неисправности этой оправы объектив может оказаться меньше своей оптимальной высоты и не достичь положения фокусировки. Точно также иммерсионное масло типа Б может препятствовать установке объектива на достаточно близкое расстояние до препарата до момента срабатывания пружинящей оправы.

Блокировка фокусировки: Чтобы предотвратить повреждение объектива, в некоторых микроскопах предусмотрено устройство блокировки, ограничивающее движение предметного столика вверх. Здесь проблема в том, что если при настройке использовалось толстое предметное стекло, то может оказаться, что потом настроить фокусировку при работе с тонким стеклом невозможно.

Одна фирма изготавливает микроскопы, которые обеспечивают фокусировку препарата перемещением по вертикали объективов вместо перемещения предметного столика; в этом случае объектив имеет ограничитель перемещения.

Длина тубуса: Большинство производителей изготовляют все объективы с расчетом на одну длину тубуса и для биологических микроскопов проходящего света, и для металлографических микроскопов падающего света. Однако некоторые фирмы выпускают объективы для тубусов длиной 160 мм, другие — объективы «на бесконечность» для специальных моделей. На одном и том же микроскопе их использовать невозможно. Одна фирма изготавливает объективы на тубус 160 мм для микроскопов проходящего света и на тубус 215 мм — для микроскопов отраженного света.

Окуляры

Первая характеристика окуляров — увеличение, указанное сверху или сбоку окуляра: 10x, 15x и т. п. Вторая характеристика — вынос выходного зрачка, то есть расстояние от последней поверхности окуляра до плоскости изображения, которое появляется в микроскопе. Это расстояние обычно составляет величину от 15 до 24 мм. Последнее расстояние необходимо для исследователей, которые вследствие астигматизма постоянно носят очки. Для остальных наблюдателей это расстояние колеблется от 15 до 18 мм.

Окуляры обладают увеличением, которое составляет часть общего увеличения микроскопа. Последнее же равно произведению увеличений окуляра и объектива. Таким образом, общее увеличение микроскопа при использовании 10-кратного объектива и 10-кратного окуляра равно 10 х 10 = 100x.

Бинокулярная насадка или другое оптическое устройство, введенное в оптический ход микроскопа, могут вносить дополнительное увеличение. Так, при использовании бинокулярной насадки с собственным увеличением 1,5x общее увеличение микроскопа в указанном выше примере будет равно 10 х 10 х 1,5 = 150x.

Обычно в окулярах имеется посадочное место для установки в них сеток для измерений или других целей. Это приводит к уменьшению внутреннего диаметра окуляра и к соответствующему уменьшению поля зрения. Заметим, что именно окуляр (а не объектив) определяет размер поля зрения микроскопа. Более подробно это будет рассмотрено при описании объективов. Есть много разных окуляров, предназначенных для различных целей.

В настоящее время используются редко, в основном на недорогих микроскопах с дешевыми объективами. Окуляр состоит из двух одиночных линз; вторая по ходу лучей — глазная линза — имеет небольшой диаметр и маленькую заднюю апертуру для ограничения поля зрения. Эти окуляры не обеспечивают цветокоррекцию, то есть компенсацию хроматических аберраций (см. раздел, посвященный поляризационным микроскопам).

Получили сегодня широкое распространение. Окуляры отличаются большим диаметром первой линзы, удобны в работе; выпускаются с различными расстояниями от оправы окуляра до плоскости, в которой образуется изображение. Наружный диаметр тубуса, куда вставляется такой окуляр, составляет 25 мм (около 1 дюйма). Внутренний диаметр тубуса равен обычно 23,5 мм; наружный диаметр окуляра — 23 мм; внутренний диаметр окуляра — 21,5 мм. В окуляр на специальный круглый выступ с внутренним диаметром 18 мм часто помещается сетка диаметром 20 мм. Таким образом, рабочая модель биологического микроскопа с 10x широкопольным окуляром обеспечивает поле зрения 18 мм, более совершенный микроскоп — 20 мм. Исследовательские микроскопы могут иметь поле зрения 20 или 25 мм, очень немногие микроскопы — 30 мм. Вероятно есть очень веские причины для использования такого широкого поля зрения, но автор не знает ни одной. Обычно интересующие исследователя структуры препарата перемещают в центр поля зрения при помощи предметного столика. Разумеется, бывают иные ситуации. Например, невропатолог предпочтет целиком рассматривать всю структуру нервной клетки Пуркинье и её ветвей или любую другую клетку. Но для этого он воспользуется объективом с низким увеличением, чтобы увеличить площадь препарата, находящуюся в поле зрения.

На всех биологических микроскопах MicroOptix установлены широкопольные окуляры 10x/18 мм

Востребованы не так часто. Раньше сложные объективы с высокими значениями числовой апертуры (см. дальше) давали различное увеличение для разных цветов — большее для фиолетового и синего и меньшее для красного. Из-за этого ближний конец поля изнутри светился синим, а дальний — красным. Для устранения такого эффекта устанавливали компенсационные окуляры, обеспечивающие противоположный эффект. Чтобы не возникало проблемы при работе с объективами низкого увеличения, их производят сразу со встроенной ошибкой, поэтому при использовании компенсационных окуляров цвета соответствовали действительности. Сложно, не так ли?

Окуляры с фокусированной верхней линзой. Предназначены для измерений при большом увеличении, позволяют настроить резкое изображение шкалы или сетки для всех пользователей. Однако для этого прекрасно подходят и обычные окуляры.

Продолжение темы «Компоненты микроскопа» через две недели. Расскажем о визуальных насадках, предметных столиках и конденсорах. Всего доброго.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Окуляр и объектив в чем разница. Смотреть фото Окуляр и объектив в чем разница. Смотреть картинку Окуляр и объектив в чем разница. Картинка про Окуляр и объектив в чем разница. Фото Окуляр и объектив в чем разница
Рисунок 1.