Окуляр и объектив в чем разница
Объектив и окуляр микроскопа
В одной из наших предыдущих статьей мы рассказывали о механической системе микроскопа. Пришло время поговорить и об оптической. Самые важные и незаменимые ее элементы – объектив и окуляр микроскопа. Иногда этих аксессуаров бывает несколько – все зависит от модели оптического прибора. В детских микроскопах редко встретишь больше одного объектива и одного окуляра. А вот комплектация профессиональной модели может включать, например, шесть объективов и четыре окуляра. Зачем такое разнообразие – давайте разбираться!
Окуляр устанавливается сверху, в него мы смотрим. Вместе с монокулярным микроскопом поставляется как минимум один окуляр, а вот для бинокулярных моделей нужна уже хотя бы пара. Объектив микроскопа – аксессуар, который «смотрит» на образец. Он расположен прямо над предметным столиком. В самые простые детские микроскопы устанавливают один объектив, в микроскопы любительского и профессионального уровня – не менее трех. Если объективов несколько, они фиксируются в револьверном устройстве – механизме, который позволяет их менять прямо во время наблюдений.
У каждого окуляра и объектива есть свое увеличение. А увеличение микроскопа высчитывается по формуле: кратность окуляра умножить на кратность объектива. Поэтому чем больше в комплекте поставки окуляров и объективов, тем больше в микроскопе вариантов увеличений. Рассмотрим на примере. Есть два окуляра кратностью 10х и 12,5х и три объектива с кратностью 10х, 40х и 100х. На какое увеличение микроскопа можно рассчитывать? Ответ в табличке ниже.
Объектив 10х | Объектив 40х | Объектив 100х | |
Окуляр 10х | 100 | 400 | 1000 |
Окуляр 12,5х | 125 | 500 | 1250 |
Например, мы видим, что взяв окуляр 10х и объектив 40х микроскопа, мы получили увеличение в 400 крат. Это простое перемножение характеристик выбранных оптических аксессуаров.
В нашем интернет-магазине вы можете найти микроскопы с разной комплектацией и возможностями. Раздел представлен по ссылке.
Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.
Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.
Объективы и окуляры микроскопов
Классификация линзовых объективов
Объективы микроскопов можно классифицировать по различным признакам, например, по спектральной области, для которой они рассчитаны и применяются, расчетной оптической длине тубуса, по способу освещения наблюдаемого объекта, возможности использования покровного стекла, иммерсионной жидкости и т.п.
Наибольшее предпочтение заслуживает классификация объективовпо степени их коррекции, которая различает следующие типы объективов: монохроматы, ахроматы и апохроматы.
Монохроматы – это объективы, у которых аберрации исправлены для одной длины волны или узкой спектральной области. В первую очередь, у них исправляются сферическая аберрация, кома и астигматизм.
Объективы, у которых ахроматизация выполнена для одной основной и двух дополнительных длин волн, называются ахроматами. У таких объективов исправлению подлежат: сферическая аберрация, кома, астигматизм, хроматическая аберрация положения, отчасти хроматическая аберрация увеличения и сферохроматическая аберрация.
У апохроматических объективов спектральная область расширена и ахроматизация выполняется для трех дополнительных длин волн. У объективов с апохроматической коррекцией кроме хроматизма положения, сферической аберрации, комы и астигматизма достаточно хорошо исправляются также вторичный спектр и сферохроматическая аберрация благодаря введению в оптическую схему линз из кристаллов и стекол с особым ходом частных относительных дисперсий. Кроме того, отчасти исправляется хроматическая аберрация увеличения.
Для количественной оценки качества изображения вычисляются волновые аберрации, которые пока в микроскопии являются основным критерием оценки и сравнения объективов. У ахроматов для точки на оси волновая аберрация основного цвета, как правило, не превышает 0.25l (т.е. выполняется критерий Рэлея), а для всей спектральной области, на которую рассчитаны ахроматы, не более 0.5l. У апохроматических объективов сферическая аберрация для основного цвета обычно не превышает (0.1 – 0.15)λ. Для спектральных линий C и F волновые аберрации не более 0.25λ, для линии G’ они лежат в пределах от 0.25 до 0.5λ.
Также выпускаются объективы с плоской поверхностью изображения –планобъективы. Эти объективы имеют увеличенное поле зрения по сравнению с обычными ахроматами и апохроматами. Планобъективы по степени коррекции делятся на планмонохроматы, планахроматы и планапохроматы. Требования к коррекции аберраций для точки на оси планобъективов такие же, как и для соответствующих монохроматов, ахроматов и апохроматов. Но, в отличие от последних, у планобъективов существенно лучше исправлены кривизна изображения и астигматизм, а волновые аберрации в пределах всего поля зрения для внеосевых точек предмета не превышают (0.5 –1.0)λ.
Окуляры микроскопов
Окуляры (от лат. оculus, что означает «глаз») представляют собой лупы, с помощью которых наблюдается промежуточное изображение, создаваемое объективом и тубусной линзой. Кроме того, он проецирует выходной зрачок объектива на расстоянии, удобном для работы. Окуляр работает в узких пучках лучей, поэтому его сферическая и сферохроматическая аберрации малы по сравнению с остаточными аберрациями объектива и не влияют на качество изображения, даваемого объективом микроскопа. В некоторых окулярах исправляются хроматическая разность увеличения и дисторсия. Применение того или иного окуляра определяется типом объектива и характером исправления аберраций. Величина поля зрения микроскопа определяется размером диафрагмы поля зрения окуляра.
Окуляры не являются простыми линзами, а представляют собой скорригированные оптические системы, состоящие из нескольких линз. Обычно окуляр дает дополнительное увеличение Г=10x. Промежуточное изображение находится на расстоянии чтения, составляющем 25 см. Общее увеличение микроскопа рассчитывается по следующей формуле:
Vмикроскопа=Vобъектива x Гокуляра.
На практике принято, чтобы один из окуляров мог фокусироваться, что позволяет уравнивать небольшую разницу в установке на резкость для обоих глаз.
В зависимости от своих параметров окуляры подразделяются на отдельные классы. Отличия между ними проявляются при больших полях зрения и, в особенности, на краю изображения.
Окуляры сконструированы таким образом, что промежуточное изображение микроскопа находится на расстоянии от них. Поэтому удобно размещать в плоскости промежуточного изображения различные шкалы, сетки или другие сравнительные элементы, можно производить необходимые измерения.
Унификация характеристик объективов и окуляров
До недавнего времени использовались объективы с различными унифицированными параметрами технических характеристик [1]. В зависимости от увеличения и числовой апертуры, а также типа коррекции встречались объективы с различной высотой (расстояние от объектива до опорной плоскости объектива). Эта величина колебалась в довольно широких пределах – от 12 до 70 мм, что приводило к неудобству работы на револьверном устройстве.
Хроматическая разность увеличения у старых ахроматических объективов различных типов не была постоянной, а изменялась от нуля (для «слабых» объективов) до 2% (для объективов с большим масштабом увеличения). Это создавало дополнительные неудобства при работе. Так, например, требовалось использование в микроскопах двойного комплекта окуляров: Гюйгенса – для работы с объективами малых увеличений и компенсационных – для работы со «средними» и «сильными» объективами. К тому же, старые компенсационные окуляры обладали серьезным недостатком – непостоянством хроматизма увеличения по полю зрения, что приводило к наличию заметной окраски в плоскости промежуточного изображения микроскопа. Проведенная в последние годы унификация характеристик объективов и окуляров дала следующие результаты.
Оценка качества изображения микрообъективов
Для оценки разрешающей способности объективов микроскопов пользуются препаратами микроскопических элементов растительных и животных образований. К наиболее распространенным препаратам относятся известковые панцири микроскопических водорослей – диатомей. Ширина и расстояние между линейными элементами этих панцирей для каждой определенного вида диатомеи имеют определенные значения с наибольшими отступлениями от средних величин. Общепринято пользоваться небольшим набором препаратов различных определенных диатомей в количестве не свыше десяти. Они подобраны таким образом, что среди них можно найти структурные элементы с расстояниями от 0.25 до 1.80 мкм [1].
Одновременно с разрешающей способностью исследуемого объектива опытный исследователь обнаруживает дефекты объектива и оценивает его качество. Оценка качества изображения имеет не менее важное значение, чем определение разрешающей способности объектива.
Теория дифракционной точки
При испытании объективов, их сборке и контроле пользуются весьма простыми приемами наблюдения «светящихся точек», полученных в виде малых отверстий различных размеров в тонком слое серебра, осажденном на стеклянной пластинке. Наблюдая изображения этих отверстий в проходящем свете, можно весьма отчетливо обнаружить все недостатки объектива: недостаточную центрировку, натяжение в стекле и т.д. [2].
Критерием разрешающей способности микроскопа является предел, до которого два маленьких предмета воспринимаются еще как раздельные объекты. Расстояние dо, при котором имеет место такой предельный случай, может быть теоретически рассчитано.
Необходимо знать, что любая точка предмета – пусть это будет очень маленькое отверстие в металлической фольге 1 (рисунок 1) – не отображается объективом и тубусной линзой 2 как светлый диск с резкими краями, а как размытое пятно, окруженное дифракционными кольцами 3. Эта картина носит название «диска Эри». Дифракционные кольца возникают в результате ограниченной апертуры объектива, т.е. объектив играет роль «отверстия». Чем больше апертура объектива, тем меньше будет расстояние dо
Рисунок 1. |