Окружность касается стороны треугольника в ее середине докажите что этот треугольник равнобедренный
В окружность радиуса R вписан треугольник ABC. Вторая окружность радиуса r, концентрическая с первой, касается одной стороны треугольника и делит каждую из двух других сторон на три равные части.
а) Докажите, что треугольник ABC равнобедренный.
б) Найдите
Пояснение: концентрические окружности — это окружности, у которых совпадают центры.
а) Так как центр окружности лежит в точке пересечения серединных перпендикуляров, то точка H является серединой стороны BC. Обозначим BH = HC = a, AK = KL = LB = x, AM = MN = NC = y. Из свойств касательной и секущей получаем:
Получили, что AB = 3x = AC, то есть треугольник ABC — равнобедренный. Заодно получается, что точки A, O и H лежат на одной прямой.
Что и требовалось доказать.
б) Из пункта а) известно, что откуда Выразим различными способами площадь треугольника ABC.
— Через основание и высоту:
Через все стороны и радиус описанной окружности:
где
Приравнивая второй и третий результат (и подставляя ), получим:
Теперь приравняем первое и второе выражения для площади, откуда получим:
Ответ:
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта а и обоснованно получен верный ответ в пункте б.
3
Получен обоснованный ответ в пункте б.
Имеется верное доказательство утверждения пункта а и при обоснованном решении пункта б получен неверный ответ из-за арифметической ошибки.
2
Имеется верное доказательство утверждения пункта а.
При обоснованном решении пункта б получен неверный ответ из-за арифметической ошибки.
Окружность касается стороны треугольника в ее середине докажите что этот треугольник равнобедренный
Дан треугольник ABC со сторонами и Точки M и N — середины сторон AB и AC соответственно.
а) Докажите, что окружность, вписанная в треугольник ABC, касается одной из средних линий.
б) Найдите общую хорду окружностей, одна из которых вписана в треугольник ABC, а вторая описана около треугольника AMN.
а) Из теоремы, обратной теореме Пифагора, следует, что треугольник ABC прямоугольный с прямым углом при вершине C. Пусть радиус его вписанной окружности равен r. Тогда
Пусть K — середина катета BC. Тогда расстояние между прямыми KM и AC равно длине отрезка MN, то есть 20. Значит, расстояние между этими прямыми равно диаметру вписанной в треугольник ABC окружности. Следовательно, эта окружность касается средней линии KM.
б) Треугольник AMN прямоугольный с прямым углом при вершине N, значит, центр описанной окружности треугольника AMN — середина Q отрезка AM, а радиус равен 12,5. Пусть вписанная окружность треугольника ABC касается сторон AB и AC в точках E и F соответственно. Тогда
Пусть L — одна из точек пересечения рассматриваемых окружностей. Общая хорда пересекающихся окружностей перпендикулярна линии центров и делится ею пополам, значит, искомое расстояние равно удвоенной высоте LH треугольника OLQ со сторонами и проведённой из вершины L. Высота QT этого равнобедренного треугольника, опущенная на основание, является медианой, значит,
Следовательно, искомое расстояние равно
Ответ:
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Окружность касается стороны треугольника в ее середине докажите что этот треугольник равнобедренный
Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжений боковых сторон треугольника и касается основания AC. Найдите радиус окружности, вписанной в треугольник ABC.
Пусть O — центр данной окружности, а Q — центр окружности, вписанной в треугольник ABC. Точка касания M окружностей делит AC пополам. AQ и AO — биссектрисы смежных углов, значит, угол OAQ прямой. Из прямоугольного треугольника OAQ получаем: AM 2 = MQ · MO. Следовательно,
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Данная окружность касается стороны AC в её середине M и продолжений сторон BA и BC треугольника ABC.
Пусть O — центр этой окружности, а Q — центр окружности, вписанный в треугольник ABC. Угол OAQ — прямой как угол между биссектрисами смежных углов. Треугольник OAQ — прямоугольный, AM — его высота. Из этого треугольника находим, что . Следовательно, .
Ответ: .
Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанный в треугольник ABC.
Данная окружность касается стороны AC в её середине M и продолжений сторон BA и BC треугольника ABC. Пусть O — центр этой окружности, а Q — центр окружности, вписанной в треугольник ABC. Угол OAQ — прямой как угол между биссектрисами смежных углов. Треугольник OAQ — прямоугольный, AM — его высота. Из этого треугольника находим, что . Следовательно, .
Пусть O — центр данной окружности, а Q — центр окружности, вписанной в треугольник Точка касания M окружностей делит AC пополам. AQ и AO — биссектрисы смежных углов, значит, угол OAQ прямой. Из прямоугольного треугольника OAQ получаем:
Основание AC равнобедренного треугольника ABC равно 6. Окружность радиуса 4,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Введём обозначения, приведённые на рисунке. Лучи AO и AQ — соответственно биссектрисы углов CAP и BAC, поскольку эти лучи проходят через центры вписанных окружностей. M — середина основания AC, следовательно, Углы QAM и AOM равны друг другу, как углы с взаимно перпендикулярными сторонами. Рассмотрим треугольники QAM и AMO — они прямоугольные и имеют равные углы AOM и QAM, следовательно, эти треугольники подобны:
Отсюда следует, что радиус вписаной окружности:
Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Введём обозначения, приведённые на рисунке. Лучи AO и AQ — соответственно биссектрисы углов CAP и BAC, поскольку эти лучи проходят через центры вписанных окружностей. M — середина основания AC, следовательно, Углы QAM и AOM равны друг другу, как углы с взаимно перпендикулярными сторонами. Рассмотрим треугольники QAM и AMO — они прямоугольные и имеют равные углы QAM и AOM, следовательно, эти треугольники подобны:
Отсюда следует, что радиус вписаной окружности:
Основание AC равнобедренного треугольника ABC равно 18. Окружность радиуса 12 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Введём обозначения, приведённые на рисунке. Лучи AO и AQ — соответственно биссектрисы углов CAP и BAC, поскольку эти лучи проходят через центры вписанных окружностей. M — середина основания AC, следовательно, Углы QOA и AOM равны друг другу, как углы с взаимно перпендикулярными сторонами. Рассмотрим треугольники QAM и AMO — они прямоугольные и имеют равные углы QOA и AOM, следовательно, эти треугольники подобны:
Отсюда следует, что радиус вписаной окружности:
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Введём обозначения, приведённые на рисунке. Лучи AO и AQ — соответственно биссектрисы углов CAP и BAC, поскольку эти лучи проходят через центры вписанных окружностей. M — середина основания AC, следовательно, Углы QAM и AOM равны друг другу, как углы с взаимно перпендикулярными сторонами. Рассмотрим треугольники QAM и AMO — они прямоугольные и имеют равные углы QOA и AOM, следовательно, эти треугольники подобны:
Отсюда следует, что радиус вписаной окружности:
Основание AC равнобедренного треугольника ABC равно 8. Окружность радиуса 5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Введём обозначения, приведённые на рисунке. Лучи AO и AQ — соответственно биссектрисы углов CAP и BAC, поскольку эти лучи проходят через центры вписанных окружностей. M — середина основания AC, следовательно, Углы QAM и AOM равны друг другу, как углы с взаимно перпендикулярными сторонами. Рассмотрим треугольники QAM и AMO — они прямоугольные и имеют равные углы QOA и AOM, следовательно, эти треугольники подобны:
Отсюда следует, что радиус вписаной окружности:
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 6 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Введём обозначения, приведённые на рисунке. Лучи AO и AQ — соответственно биссектрисы углов CAP и BAC, поскольку эти лучи проходят через центры вписанных окружностей. M — середина основания AC, следовательно, Углы QAM и AOM равны друг другу, как углы с взаимно перпендикулярными сторонами. Рассмотрим треугольники QAM и AMO — они прямоугольные и имеют равные углы QAM и AOM, следовательно, эти треугольники подобны:
Отсюда следует, что радиус вписаной окружности:
Ответ:
Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Введём обозначения, приведённые на рисунке. Лучи AO и AQ — соответственно биссектрисы углов CAP и BAC, поскольку эти лучи проходят через центры вписанных окружностей. M — середина основания AC, следовательно, Углы QAM и AOM равны друг другу, как углы с взаимно перпендикулярными сторонами. Рассмотрим треугольники QAM и AMO — они прямоугольные и имеют равные углы QAM и AOM, следовательно, эти треугольники подобны:
Отсюда следует, что радиус вписаной окружности:
Введём обозначения, приведённые на рисунке. Лучи AO и AQ — соответственно биссектрисы углов CAP и BAC, поскольку эти лучи проходят через центры вписанных окружностей. M — середина основания AC, следовательно, Углы QAM и AOM равны друг другу, как углы с взаимно перпендикулярными сторонами. Рассмотрим треугольники QAM и AMO — они прямоугольные и имеют равные углы QAM и AOM, следовательно, эти треугольники подобны:
Отсюда следует, что радиус вписаной окружности:
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Введём обозначения, приведённые на рисунке. Лучи AO и AQ — соответственно биссектрисы углов CAP и BAC, поскольку эти лучи проходят через центры вписанных окружностей. M — середина основания AC, следовательно, Углы QAM и AOM равны друг другу, как углы с взаимно перпендикулярными сторонами. Рассмотрим треугольники QAM и AMO — они прямоугольные и имеют равные углы QAM и AOM, следовательно, эти треугольники подобны:
Все они имеют нечто общее: во-первых, это стандартный уровень сложности, то есть вполне решаемые задачи. Пункт (а) в них вообще простой.
Во-вторых, в каждой из них применяются свойства четырехугольников, вписанных в окружности.
В первой задаче такая окружность находится почти сразу, причем она – вспомогательная, и ее можно даже не изображать на чертеже. Главное – найти равные вписанные углы, опирающиеся на равные дуги или на одну дугу.
Также здесь использована формула синуса тройного угла. Если вы ее забыли – не беда. Ведь а формулу синуса суммы вы знаете.
1. Дана равнобедренная трапеция ABCD, в которой меньшее основание ВС равно боковой стороне. Точка Е такова, что ВЕ перпендикулярно AD и СЕ перпендикулярно BD. а) Доказать, что угол АЕВ равен углу BDA. б) Найти площадь трапеции ABCD, если АВ = 32, косинус угла АDВ равен
– равнобедренный, CM – высота, проведенная к основанию, значит, M – середина BD.
Докажем, что точки A, B, C, D, E лежат на одной окружности.
ABCD – равнобедренная трапеция, ее можно вписать в окружность.
В – медиана и высота, значит, равнобедренный, BE = ED.
Тогда по трем сторонам, четырехугольник BCDE можно вписать в окружность, т.к.
Так как вокруг можно описать только одну окружность и вокруг четырехугольников ABCD и BCDE тоже можно описать окружность, точки A, B, C, D, E лежат на одной окружности, так как опираются на одну и ту же дугу AB (точки E и D лежат по одну сторону от прямой AD).
б) Так как AB = BC = CD, то дуги AB, BC и CD также равны.
Четырехугольник ABDE вписан в окружность, тогда
По формуле синуса тройного угла,
тогда по теореме синусов
Проведем в трапеции ABCD высоту CK, тогда
BH и CK – высоты трапеции, а так как трапеция равнобедренная, то
Во второй задаче мы увидим ту же идею: вспомогательную окружность. Это один из методов, помогающих решать задачи ЕГЭ по геометрии. Есть здесь и другой мощный прием – использование двух пар подобных треугольников. И еще свойство высоты прямоугольного треугольника, проведенной к гипотенузе. Если вы в восьмом и девятом классе учили геометрию – вы должны владеть этими приемами.
2. Дан прямоугольный треугольник АВС с прямым углом С. Из вершины С на гипотенузу опущена высота СН, на АС и ВС соответственно отмечены точки М и N так, что угол MHN – прямой. а) Докажите, что треугольники МNH и АВС подобны. б) Найдите СN, если АС = 5, СМ = 2, ВС = 3.
а) Рассмотрим четырехугольник CMHN.
по условию, значит, CMHN можно вписать в окружность; вписанные, опираются на дугу HN.
Запишем соотношение сходственных сторон.
По условию, AM = 3, найдем CH — высоту
по теореме Пифагора,
AH — проекция катета AC на гипотенузу, по свойствам прямоугольного треугольника, отсюда
В следующей задаче мы снова видим окружность и вписанную в нее трапецию. И наверное, вы уже заметили: пункт (а) задач по геометрии на ЕГЭ часто оказывается подсказкой для решения пункта (б). То, что мы доказали в (а), мы используем в пункте (б).
3. Даны 5 точек на окружности: A, B, C, D, E, причем АЕ = ED = CD, ВЕ перпендикулярен АС. Точка Т – точка пересечения АС и BD. а) Докажите, что отрезок ЕС делит отрезок ТD пополам. б) Найдите площадь треугольника АВТ, если BD = 10, АЕ =
Докажем, что M — середина TD.
Если AE = ED = DC, то дуги AE, ED, DC, также равны;
— накрест лежащие, при пересечении AC и DE секущей CE, значит, AEDC — равнобедренная трапеция. значит, BD — диаметр окружности.
(опирается на диаметр), по катету и гипотенузе, тогда DM — биссектриса равнобедренного т.к. — равнобедренный, то DM — медиана M — середина CE, кроме того, DM — высота
В — медиана и высота, значит, — равнобедренный, а так как — накрест лежащие, при параллельных прямых AC и DE и секущей CE, то по боковой стороне и углу при основании, тогда
Мы нашли, что AE = ED = CD = CT = ET.
BD = 10 — диаметр окружности.
— равнобедренный, AE = ET, — высота и медиана
Тогда BN — медиана и высота — равнобедренный, AB = BT.
Обозначим тогда — опираются на дугу AE,
Из по теореме синусов:
И еще одна трапеция, вписанная в окружность. Теперь вы точно выучите ее свойства наизусть! Также здесь применяется теорема о пересекающихся хордах. Все эти полезные теоремы, свойства и признаки можно найти в нашей универсальной шпаргалке – Справочнике Анны Малковой для подготовки к ЕГЭ по математике. Скачать Справочник бесплатно можно здесь.
4. Трапеция с большим основанием AD и высотой ВН вписана в окружность. Прямая BH пересекает окружность в точке К.
б) Найдите AD, если: радиус окружности равен шести, СК пересекается с AD в точке N и площадь четырехугольника BHNC в 24 раза больше, чем плошать треугольника KHN.
а) Трапеция ABCD вписана в окружность, следовательно, AB = CD (трапеция равнобокая)
Тогда — вписанные, опираются одну и ту же на дугу AK;
следовательно, CK — диаметр окружности, так как вписанный угол, опирающийся на диаметр, прямой; — опирается на диаметр CK, значит,
(опираются на дугу BC), тогда
Обозначим так как HE = BC,
Из подобия треугольников KNH и KCB следует, что тогда
По теореме о пересекающихся хордах,
Представив левую часть уравнения как разность квадратов, получим:
По смыслу задачи тогда и значит
Задача по геометрии на ЕГЭ по математике оценивается в 3 балла. Как видите, в 2021 году эти 3 балла за геометрию можно было получить без особенных трудностей. На нашем Онлайн-курсе подготовки к ЕГЭ мы решаем и такие задачи по геометрии, и более сложные. Если ты сейчас в 10-м или в 11-м классе – попробуй бесплатно Демо-доступ к Онлайн-курсу.
5. (Резервный день) Окружность с центром О, построенная на катете АС прямоугольного треугольника АВС, как на диаметре, пересекает гипотенузу АВ в точках А и D. Касательная, проведенная к этой окружности в точке D, пересекает катет ВС в точке М.
А) Докажите, что ВМ = СМ Б) Прямая DM пересекает прямую АС в точке Р, прямая ОМ пересекает прямую ВР в точке К.
Найдите ВК : КР, если
а) Так как – радиус окружности, – равнобедренный, так как (касательная перпендикулярна радиусу, проведенному в точку касания), тогда
– угол между касательной и хордой,
Тогда т.е. – высота – прямоугольный, – равнобедренный, отсюда