Изучение технических средств для измерения основных параметров технологических процессов
Лекция 7. Методы и средства технического диагностирования
Техническая диагностика представляет собой систему методов, применяемых для установления и распознания признаков, характеризующих техническое состояние оборудования. Все методы технического диагностирования разделяются на субъективные (органолептические) и объективные (приборные).
Несмотря на развитие аппаратных средств измерений и контроля, большая роль в определении неисправностей и нахождении повреждений механического оборудования приходится на субъективные методы, предполагающие использование человеческих органов чувств. Комплекс таких органолептических методов контроля получил название осмотр. Осмотр, включает в себя элементы визуального, измерительного контроля, восприятия шумов и вибраций, оценку степени нагрева корпусных деталей, методы осязания, используемые для определения фактического состояния оборудования и его составных частей, процессов их функционирования и взаимодействия, влияния окружающей среды и условий эксплуатации.
Органолептические методы
Органолептический метод (органо- + греч. leptikos – способный взять, воспринять) основан на анализе информации, воспринимаемой органами чувств человека (зрение, обоняние, осязание, слух) без применения технических измерительных или регистрационных средств. Эта информация не может быть представлена в численном выражении, а основывается на ощущениях, генерируемых органами чувств. Решение относительно объекта контроля принимается по результатам анализа чувственных восприятий. Поэтому точность метода существенно зависит от квалификации, опыта и способностей лиц, проводящих диагностирование. При органолептическом контроле могут использоваться технические средства, не являющиеся измерительными, а лишь повышающие разрешающие способности или восприимчивость органов чувств (лупа, микроскоп, слуховая трубка и т.п.).
Принятие решения имеет характер «соответствует – не соответствует» и определяется диагностическими правилами типа «если – то», имеющими конкретную реализацию для узлов механизма. Практически, происходит оценка состояния оборудования по двухуровневой шкале – продолжать эксплуатацию или необходим ремонт. Основная цель – обнаружение отклонений от работоспособного состояния механизма. Решение о техническом состоянии механизма принимает технологический или ремонтный персонал, обслуживающий оборудование на основании опыта и производственной ситуации. Принимается решение об остановке оборудования для визуального осмотра и последующего ремонта, продолжения эксплуатации или проведения диагностирования с использованием приборных методов.
Практический опыт показывает, что невозможно заменить механика с его субъективизмом, основанном на знании особенностей эксплуатации и ремонта оборудования. Этот метод является первым уровнем решения задач диагностирования. Стандартами, использование органолептического метода контроля не регламентируется, однако в практике работы служб технического обслуживания он применяется повсеместно. Основываясь на опыте эксплуатации металлургических машин накопленным рядом фирм, данный метод интерпретируется следующим образом.
Основные органолептические методы, используемые при оценке технического состояния механического оборудования.
1.1 Акустическое восприятие, позволяющее оценивать наиболее значимые повреждения, меняющие акустическую картину механизма. Весьма эффективно при определении повреждений муфт, дисбаланса или ослабления посадки деталей, обрыве стержней ротора, ударах деталей. Диагностические признаки – изменение тональности, ритма и громкости звука.
1.2 Анализ колебаний механизмов. В этом методе механические колебания корпусных деталей преобразуются в звуковые колебания при помощи технических или электронных стетоскопов. Электронные средства позволяют расширить возможности человеческого восприятия.
Пределом для непосредственного восприятия является температура +60 0 С – выдерживаемая, у большинства тыльной стороной ладони без болевых ощущений в течение 5 с. Использование дополнительных средств – брызг воды позволяет контролировать значения +70 0 С – видимое испарение пятен воды и +100 0 С – кипение воды внутри капли на поверхности корпусной детали. Недопустимым является прикосновение к вращающимся и токоведущим деталям.
Приборные методы
Наряду с органолептическими методами при техническом диагностировании используются приборные методы, позволяющие получить количественную оценку измеряемого параметра. Диагностирование с применением приборов основано на получении информации в виде электрических, световых, звуковых сигналов, отображающих изменение состояния объекта. В зависимости от физической природы измеряемых параметров различают:
Классификация диагностических приборов может быть проведена по следующим признакам: цифровые и аналоговые, показывающие и сигнализирующие, универсальные и специализированные, стационарные и переносные и др.
Однако, все средства технического диагностирования, используемых для диагностики механического оборудования, по уровню решаемых задач и приборной реализации можно разделить на: портативные, анализаторы и встроенные системы.
Портативные средства технического диагностирования реализуют измерение одного или нескольких диагностических параметров, характеризуются малыми габаритами и отсутствием обмена данных с компьютерными системами (рисунок 40). К их преимуществам относятся: быстрота процесса измерения, простое обслуживание и управление, оперативное и наглядное получение информации в виде одиночного результата, низкая стоимость. Область применения – оперативный контроль технического состояния оборудования работниками ремонтных служб и технологическим персоналом.
Средства измерения технологических параметров
Во всем сообществе электронных средств промышленной автоматизации в последнее время появилась ниша приборов с цифровым способом передачи данных, то есть на смену господствовавшему в течение почти 25 лет стандарту 0. 20 мА (4. 20 мА и др.) приходит двоичный способ представления информации в системах управления и регулирования. Преимущества данного способа: повышенная точность передачи данных, возможность обнаружения и устранения ошибок при передаче, возможность использования одной линии связи для работы нескольких устройств, а также использование одной линии для передачи как аналоговых, так и цифровых сигналов (например, HART-протокол) и т.д.
С развитием технических средств автоматизации менялись методы измерения и идеология построения самих систем измерения и управления.
Далее рассматривается аппаратная реализация первого (нижнего) уровня современной АСУТП, объединяющего информационные системы сбора и первичной обработки информации.
Считывание измеряемого параметра в цифровой форме повышает точность за счет ограничений операций цифро-аналогового и аналого-цифрового преобразований сигнала 4. 20 мА. Но цифровой способ измерения вносит задержку в измерения (время, затраченное на последовательную передачу информационной посылки), которая может быть неприемлема для управления быстродействующими контурами.
Цифровой датчик позволяет хранить дополнительную информацию о процессе (тэг, описатель позиции измерения, диапазон калибровки, единицы измерения), записи о процедурах его обслуживания и т.п., считываемой по запросу. Многопараметрические приборы содержат базу данных по физическим свойствам измеряемых жидкостей и газов.
При выборе технических средств нужно руководствоваться, прежде всего, спецификой процесса. Если нет необходимости использования сложных алгоритмов управления, не требуется высокой точности, если объект не является рассредоточенным и не требует большого числа приборов, то здесь можно эффективно использовать пневматические средства. Данные устройства имеют некоторые преимущества перед электрическими: они пригодны для эксплуатации во взрыво- и пожароопасных зонах, вся автоматика защиты (отсечные клапаны) смонтированы на пневмосредствах, просты в эксплуатации, не требуют особой подготовки персонала, кроме того, требуют меньших материальных затрат на приобретение.
Для объектов с сосредоточенными параметрами (например, установка на НПЗ) более подойдут аналоговые средства, которые обладают рядом преимуществ. В частности, использование стандартных уровней сигналов не ставит проблемы сопряжения устройств, скорость передачи подходит для использования в системах реального времени, высокая точность (до 0,05 %) и возможность применения нестандартной аппаратуры. Но потребность в большом количестве недешевых соединительных проводов, ограничения на дальность передачи и подверженность влиянию помех вносят неудобства при применении.
Класс цифровых устройств, кроме перечисленных выше задач, позволяет решать задачи управления сильно распределенных объектов (например, НГДУ) и благодаря применению пары проводов для подключения нескольких приборов значительно уменьшает затраты на монтаж системы. Особенности применения цифровой передачи, из-за отсутствия единого стандарта, связаны с использованием различных протоколов связи.
Устройства связи с объектом
Почти все технологические параметры, присутствующие в реальном промышленном объекте, имеют аналоговый или дискретный вид. Существует много датчиков, которые могут преобразовывать измеряемые величины только в аналоговый вид, а также много исполнительных механизмов, имеющих только аналоговые входные сигналы. С другой стороны, новейшие средства автоматизации, которые находят все большее применение в системах управления, используют цифровое представление обрабатываемых величин. Для того, чтобы связать между собой параметры, представленные в аналоговом/дискретном и цифровом виде, используются устройства связи с объектами (УСО). Таким образом, УСО являются неотъемлемой частью любой системы управления, в том числе использующей цифровые устройства (промышленные компьютеры, вычислительные сети и т.д.). Для представления места УСО в процессе автоматизации производства подобные системы можно теоретически изобразить в виде схемы (см. рисунок 3.3).
|
Датчики, устанавливаемые на объекте, предназначены для первичного преобразования параметров в выходной сигнал для передачи в УСО. Исполнительные механизмы принимают управляющие сигналы, прошедшие через УСО, для воздействия на процесс. Связь между датчиками, исполнительными механизмами и УСО может быть аналоговой, дискретной или цифровой.
Промышленный компьютер (РС) в системе играет роль управляющего элемента, принимающего цифровую информацию от УСО и вырабатывающего управляющие сигналы. Для связи между ним и УСО используется любой из цифровых интерфейсов (ЦИ), к числу которых относятся RS-232, RS-422, RS-485 и др.
Данная схема является условной, поскольку в реальных системах модули УСО могут не присутствовать в виде самостоятельного устройства, а входить в состав датчиков или промышленных компьютеров. Примером служат датчики, которые осуществляют двойное (тройное и т.д.) преобразование измеряемой величины и выдающие на вход готовый цифровой сигнал. В этом случае граница между собственно первичным преобразователем и УСО проходит где-то внутри него. С другой стороны, УСО могут быть выполнены в виде АЦП/ЦАП-платы, вставляемой в ISA-слот компьютера. В этом случае аналоговые сигналы могут быть введены прямо в компьютер, где и преобразуются в цифровой код.
В дальнейшем в качестве УСО будем рассматривать модули, платы и другие устройства, предназначенные для приема аналоговых и дискретных сигналов от объекта (независимо от того, сколько раз они были преобразованы внутри него), преобразования его в цифровой вид для передачи в компьютер (контроллер), а также для приема цифровых управляющих данных от РС и преобразования их в вид, соответствующий исполнительным механизмам объекта.
На УСО возлагают следующие функции:
3) Обеспечение гальванической изоляции между источниками сигнала и каналами системы.
Помимо этих функций, ряд устройств связи с объектом может выполнять более сложные функции за счет наличия в их составе подсистемы аналого-цифрового преобразования и дискретного ввода-вывода, микропроцессора и средств организации одного из интерфейсов последовательной передачи данных.
Простейшим устройством гальванической развязки является электромагнитное реле. Реле, как правило, инерционны, имеют относительно большие габариты и обеспечивают ограниченное число переключений при достаточно большом потреблении энергии. Развитие электроники привело к распространению компонентов, обеспечивающих оптическую развязку между цепями. УСО, построенные с использованием такой развязки, являются недорогими, высоконадежными и быстродействующими. Кроме того, они характеризуются высоким напряжением изоляции и низкой потребляемой мощностью.
По характеру обрабатываемого сигнала УСО можно разделить на аналоговые дискретные и цифровые.
Аналоговые УСО должны обладать большой точностью, хорошей линейностью и обеспечивать достаточно большое напряжение изоляции. Кроме того, желательными являются работа с различными источниками входных сигналов (токи, напряжения, сигналы от терморезисторов, термопар и т.д.), возможности быстрой замены и низкая стоимость.
Среди модулей УСО существуют также устройства, работающие только с цифровой формой информации. К ним относятся коммуникационные модули, предназначенные для обеспечения сетевого взаимодействия. Например, повторители, служащие для увеличения протяженности линии связи, преобразователи интерфейсов RS-232/RS-485.
По направлению прохождения данных через УСО их можно разделить на 3 типа:
1) устройства ввода, обеспечивающие передачу сигнала с датчиков в устройство обработки и вывода сигналов для управления;
2) устройства вывода, предназначенные для формирования сигналов для исполнительных механизмов;
3) двунаправленные, то есть обеспечивающие ввод и вывод сигналов.
Если рассматривать УСО с точки зрения назначения и конструктивного исполнения, то здесь можно выделить следующую классификационную структуру:
1 Устройства преобразования типа «а/д сигнал « ЦИ», т.е. преобразующие аналоговые и дискретные сигналы в цифровой вид для передачи по цифровому интерфейсу (ЦИ) и наоборот. Внутри этого типа можно выделить классы:
1.1 Модули аналогового/дискретного ввода/вывода, выполненные в одном конструктиве (см. рисунок 3.4,а). Пример: серия ADAM-4000 фирмы Advantech.
1.3 Устройства типа «а/д « модуль « м.п. « контроллер « ЦИ» (см. рисунок 3.4,в). Пример: контроллеры Grayhill.
2 Вспомогательные устройства:
2.1 Устройства типа «ЦИ « ЦИ», служащие для преобразования интерфейсов либо для организации новых сегментов измерительной сети (коммуникационные модули) (см. рис. 3.4, г). Пример: серия ADAM-4000 фирмы Advantech.
2.2 Модули нормализации и гальванической развязки («а/д « модуль « а/д»). Пример: серия ADAM-3000 фирмы Advantech.
3 Платы для ввода/вывода данных в PC:
3.1 Формирователь интерфейсов («ЦИ « плата « РС»).
3.2 Платы АЦП/ЦАП («а/д « плата « РС»).
|
Некоторые УСО используют монтажные платы для установки модулей ввода/вывода. На некоторых из этих плат установлены АЦП/ЦАП-преобразователи и формирователи ЦИ.
Устройства первого вида являются основными УСО, используемыми в автоматизации и поэтому широко представленными производителями. Эти устройства предназначены для реализации взаимодействия между вычислительной системой и датчиками непрерывных и дискретных параметров, а также для выдачи управляющих воздействий на исполнительные механизмы.
Модули обеспечивают выполнение следующих функций:
· прием и дешифрацию команд по цифровому каналу;
· ввод и нормализацию аналоговых сигналов (ток и напряжение);
· опрос состояния дискретных входов;
· фильтрацию аналоговых и дискретных входных сигналов;
· вывод аналоговых (ток и напряжение) и дискретных сигналов;
· аналого-цифровое (для модулей аналогового ввода) преобразование;
· цифро-аналоговое (для модулей аналогового вывода) преобразование;
· преобразование шкалы значений непрерывных параметров в предварительно заданные единицы измерения;
· формирование и передачу в адрес основной вычислительной системы информации, содержащей результат измерения или состояние дискретных входов, после получения соответствующего запросу по цифровому каналу.
Настройка и калибровка многих модулей осуществляется программным способом путем передачи в их адрес соответствующих команд по информационной сети.
Примером таких модулей, выполненных в виде единого отдельного устройства, являются модули серии ADAM-4000, производимые фирмой Advantech.
Модули позволяют создавать на технологическом участке измерительную сеть, основанную на интерфейсе RS-485 и состоящую из нескольких сегментов.
Взаимодействие между основной вычислительной системой (контроллером сети, КС) и модулями, объединенными в сеть, осуществляется путем передачи в адрес каждого модуля запроса, содержащего префикс типа команды, символьное представление сетевого адреса запрашиваемого модуля, число, соответствующее подтипу команды, и символ возврата каретки. Для программного обеспечения КС выдача запроса означает выдачу строки символов в последовательный порт. При получения команды встроенное программное обеспечение модуля производит проверку его корректности и идентификацию, после чего посылает в адрес КС запрашиваемую информацию в виде строки символов.
Представителем 2-го класса этого типа УСО, т.е. УСО, представляющих собой набор модулей, устанавливаемых на монтажную плату, являются модули и платы фирм Analog Devices (серии 5В, 6В, 7В), Grayhill (серии 70G, 70, 70M, 73G), Opto22 и др. Особенностью этих модулей аналогового/дискретного ввода является то, что они сами по себе не обеспечивают цифрового интерфейса. Выходы этих модулей, как правило, частотные. При этом частота выходного сигнала линейно зависит от значения входного сигнала и меняется в определенном диапазоне (14,4 кГц. 72 кГц). Таким образом, чтобы получить цифровое значение входного сигнала, нужно измерить частоту с выхода модуля либо через дискретный порт ввода/вывода либо программным способом, либо используя специализированные монтажные платы, преобразующие частоту в код. Стоимость такой платы ниже, чем для традиционной платы АЦП, поскольку она работает с частотным, т.е. дискретным сигналом, а значит, не содержит дорогих аналоговых цепей.
Дополнительным достоинством устройств развязки данного класса является возможность установки на монтажную панель как аналоговых, так и дискретных модулей ввода/вывода, так как они совместимы по выводам.
Входным сигналом для модулей вывода является управляющее слово в двоичном последовательном коде, которое проходит через опторазвязку и далее через буфер подается на ЦАП. Функцию посылки этого слова принимает на себя монтажная плата.
К 3-му классу рассматриваемого типа УСО можно отнести микроконтроллеры фирмы Grayhill (OptoMux-MicroDAC, ProMux, MicroDAC LT, MicroLon, DeviceNet-DACNet и система OpenLine). Данные микроконтроллеры используют те же модули аналогового/дискретного ввода/вывода и монтажные платы, что и описанные выше. Отличительной чертой микроконтроллеров является то, что их семейства могут быть объединены в сеть и обеспечивать гибкие и недорогие решения при применении РС для управления и сбора данных. Кроме того, непосредственное расположение микроконтроллеров рядом с датчиками и исполнительными механизмами сокращает длину линий и увеличивает помехоустойчивость сети.
Они подключаются по интерфейсу RS-422/485 к сетевому серверу, в качестве которого используется промышленный РС или обычный офисный.
Коммуникационные модули предназначены для создания информационно-измерительных сетей, для увеличения протяженности линии связи или организации очередного сегмента сети (повторители).
Кроме того, к этому типу можно отнести преобразователи интерфейсов RS‑232/RS‑485 и др. Они необходимы для обеспечения связи, например, между измерительной сетью предприятия, построенной на RS-485, и интеллектуальными датчиками, которые, как правило, используют интерфейс RS-232, или радиомодемами.
Примером подобных систем являются коммуникационные модули серии ADAM‑4000 фирмы Advantech:
Платы для ввода/вывода данных в РС работают с информацией, которая приходит либо через интерфейсы RS и др. (в случае с платами формирования интерфейсов), либо вводится в РС непосредственно в аналоговом/дискретном виде через платы АЦП. Данные платы устанавливаются непосредственно в слоты ISA (реже IPC) промышленного или обычного офисного РС.
Платы АЦП/ЦАП используются непосредственно для ввода измеряемой величины в компьютер и/или для вывода управляющих сигналов. Данные платы, как правило, имеют дополнительно несколько каналов цифрового ввода/вывода.
При выборе модулей УСО желательна ориентация на тот интерфейс, на основе которого построена измерительная сеть предприятия, так как в противном случае могут потребоваться модули преобразования интерфейсов. На выбор используемого интерфейса влияет топология сети и протяженность линий связи. Для разветвленных сетей и сетей с протяженными линиями (до 1200 м и более) наиболее подходящим является интерфейс RS-485. Количество устройств, подсоединенных к такой сети, ограничено 255.
Протяженные сигнальные линии от датчиков и исполнительных устройств к центральному контроллеру часто приводят к проблемам, связанными с недостаточной помехоустойчивостью и поиском неисправностей.
Модули ввода/вывода серии ADAM-4000 фирмы Advantech наиболее целесообразно применять в распределенных системах сбора данных и прикладной области, для которых характерна невысокая скорость измерения параметров технологического процесса, подлежащих контролю. Функции локального, независимого от контроллера сети, управления представлены ограниченно и часто не удовлетворяют требованиям, выдвигаемым при постановке задачи комплексной автоматизации предприятия.
Выбор методов и средств измерения технологических параметров
Данный технологический процесс в достаточной степени поддается автоматизации. При надлежащем контроле и обслуживании всего оборудования данный участок производства работает стабильно без постоянного присутствия оператора в цехе. Все вторичные приборы и системы сигнализации возможно разместить в отдельном помещении, на расстоянии от производства.
Таким образом, нам подходят только те средства измерения параметров технологического процесса, которые располагают возможностью дистанционной передачи сигнала. Любые изменения основных показателей процесса должны мгновенно отображаться и фиксироваться, так как от этого зависит не только качество продукта на выходе, но и сохранность агрегатов и приборов. Следует выбирать точные, быстродейственные и мало инерционные методы измерения.
Для измерения давления сухого пара и перегретого в контактной головке используем манометр с тензорезистивным компланарным сенсором. Изгиб чувствительной мембраны вызывает изменение сопротивления в цепи моста Уинстона. Сигнал рассогласования преобразуется в цифровой для обработки микропроцессором. Имеется встроенный термометр для устранения влияния нежелательных температурных эффектов. Относительно простая и точная схема прекрасно подходит для данных условий производства./3/
При измерении расхода сухого пара, поступающего на подогрев ферментной смеси, используется кориолисов расходомер серии Micro Motion. Измерение происходит в реальном времени, не требует дополнительного оборудования, прибор прост в монтаже и экономически выгоден в обслуживании. Принцип его работы заключается в следующем: измеряемая среда, поступающая в сенсор, разделяется на равные половины, протекающие через каждую из сенсорных трубок. Движение задающей катушки приводит к тому, что трубки колеблются вверх-вниз в противоположном направлении друг к другу. При движении измеряемой среды через сенсор проявляется физическое явление, известное как эффект Кориолиса. Поступательное движение среды в колеблющейся сенсорной трубке приводит к возникновению кориолисового ускорения, которое, в свою очередь, приводит к появлению кориолисовой силы. Сила Кориолиса и, как следствие, величина изгиба сенсорной трубки прямо пропорциональны массовому расходу жидкости. В результате изгиба сенсорных трубок на детекторах генерируются сигналы, не совпадающие по фазе, так как сигнал с входного детектора запаздывает по отношению к сигналу с выходного детектора. Разница во времени между сигналами (ДT) измеряется в микросекундах и прямо пропорциональна массовому расходу. Чем больше ДT, тем больше массовый расход.
Для измерения концентрации сахаров в сусле, отправляемом на брожение, применим промышленный рефрактометр. Принцип его действия основан на измерении коэффициента преломления среды. Достоинство выбранного прибора в том, что на результат измерения не влияет наличие пузырьков воздуха, твердых частиц или цвет раствора, легко монтируется на любой трубе, прием и обработка оптической информации полностью оцифрованы, более быстродейственный и надежный, чем лабораторный.
Принципом действия выбранного промышленного pH-метра является непрерывное автоматическое преобразование измеряемого значения электродвижущей силы (ЭДС), возникающей на выводах электродной системы, помещенной в контролируемый раствор, в величину pH, характеризующую активность ионов водорода. Это наиболее простая и распространенная схема, удобная в обслуживании.